本专栏将从基础开始,循序渐进的讲解数据库的基本概念以及使用,希望大家都能够从中有所收获,也请大家多多支持。
专栏地址: 数据库必知必会
如果文章知识点有错误的地方,请指正!大家一起学习,一起进步。
如果感觉博主的文章还不错的话,还请关注、点赞、收藏三连支持一下博主哦
文章目录
- 1NF
- 关系数据库设计中易犯的错误
- Armstrong公理
- 正则覆盖
- 2NF
- BCNF
- 3NF(常用)
- 多值依赖
- 4NF(不常用)
1NF
如果某个域中元素被认为是不可分的,则这个域称为是原子的。
非原子域的例子如下:
― 复合属性:名字(first-name second-name)
― 多值属性:电话号码
― 复杂数据类型:面向对象的
如果关系模式R的所有属性的域都是原子的,则R称为属于第一范式 (1NF)
关系数据库设计中易犯的错误
关系数据库设计要求我们找到一个“好的”关系模式集合。一个坏的 设计可能导致
- 数据冗余
- 插入、删除、修改异常
假设,我们用以下模式代替instructor模式和department模式: inst_dept(ID, name, salary, dept_name, building, budget),如下图所示:
可以看出每个系的dept_name,building,budget数据都要重复一次,这样做浪费空间,并且可能导致数据不一致,更新也较复杂,例如修改dept_name,很多相关元组都要进行修改。
模式分解
可以将关系模式(A,B,C,D)分解为:(A,B)和(B,C,D),或(A,C,D)和 (A,B,D),或(A,B,C)和(C,D),或(A,B)、(B,C)和(C,D),或 (A,D)和 (B,C,D) 。
例,将关系模式inst_dept分解为:
― instructor(ID,name,dept_name,salary)
― department(dept_name,building,budget)
原模式(R )的所有属性都必须出现在分解后的(R1, R2)中: R = R 1 ∪ R 2 R = R_1 \cup R_2 R=R1∪R2
如果 R 1 R_1 R1和$ R_2 全 外 连 接 等 于 全外连接等于 全外连接等于R$,则是一个无损连接分解。
例:
函数依赖
例:
Armstrong公理
Armstrong公理是用来找到闭包的一个理论,先介绍一下什么是函数依赖集的闭包:给定函数依赖集F,存在其他函数依赖被 F ′ F^{\prime} F′逻辑蕴含
(例:如果A→B且B→C,则可推出逻辑蕴涵A→C),被 F ′ F^{\prime} F′逻辑蕴含的全体函数依赖的集合称为F的闭包,用 F + F^+ F+表示F的闭包。
我们可以利用Armstrong公理找出 F + F^+ F+:
- 若 β ⊆ α \beta\subseteq\alpha β⊆α,则 α → β \alpha→\beta α→β(自反律)
- 若 α → β \alpha→\beta α→β,则 γ α → γ β \gamma\alpha→\gamma\beta γα→γβ(增补率)
- 若 α → β \alpha→\beta α→β且 β → γ \beta→\gamma β→γ,则 α → γ \alpha→\gamma α→γ(传递率)
- 若 α → β \alpha→\beta α→β与 α → γ \alpha→\gamma α→γ成立,则 α → β γ \alpha→\beta\gamma α→βγ成立(合并率)
- 若 α → β γ \alpha→\beta\gamma α→βγ 成立,则 α → β \alpha→\beta α→β与 α → γ \alpha→\gamma α→γ成立(分解率)
- 若 α → β \alpha→\beta α→β与成 γ β → δ \gamma\beta→\delta γβ→δ立,则 α γ → δ \alpha\gamma→\delta αγ→δ成立(伪传递率)
例:
与此对应的还有属性集的闭包,属性集的闭包为某一些属性能推导出的所有属性形成的集合,例:
属性闭包有多种用途:
正则覆盖
F的正则覆盖(记做 F c F_c Fc)是指与F等价的“极小的”函数依赖集合:
- F c F_c Fc中任何函数依赖都不包含无关属性
- F c F_c Fc中函数依赖的左半部都是唯一的
例: α 1 → β 1 , α 1 → β 2 \alpha_1 → \beta_1,\alpha_1 → \beta_2 α1→β1,α1→β2,=> α 1 → β 1 β 2 \alpha_1 → \beta_1\beta_2 α1→β1β2
计算正则覆盖的方式如下:
2NF
在满足第一范式后,第二范式要求表中所有的列都必须依赖于主键,且不能只依赖主键的一部分。简而言之,第二范式就是非主属性非部分依赖于主键。
不符合第二范式的例子:
货物类型 | 货物ID | 货物名称 | 注意事项 |
---|---|---|---|
瓷碗 | 1 | 白色瓷碗 | 易碎品 |
瓷碗 | 2 | 青花瓷碗 | 易碎品 |
瓷碗 | 3 | 雕花瓷碗 | 易碎品 |
三合板 | 1 | 普通三合板 | 易燃物品,注意防火 |
在该表中主键为(货物类型,货物ID),货物名称字段完全依赖于这个主键,换句话说,货物的名称完全是取决于这个主键的值的。但“注意事项”这一列,仅依赖于一个主键中”货物类型“这一个属性。根据第二范式规定,既然表中存在一个对主键不是完全依赖的字段,那么我们就可以确定,该表不符合第二范式。
BCNF
通俗点说就是在一个数据库R的关系中,如果关系 α \alpha α能推导出 β \beta β,则要么 β \beta β是 α \alpha α的子集,要么 α \alpha α是R的超码。
BCNF分解算法
- 找出关系中的函数依赖关系,例如A→B
- 如果A不是超码或者B不是A的子集,则创建新的关系(A,B),并将B从原表中删除
- 直到找不出违反BCNF范式的表
例:
将class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)分解为BCNF范式,函数依赖关系如下:
- course_id → title, dept_name, credits
- building, room_number → capacity
- course_id, sec_id, semester
- year → building, room_number, time_slot_id
候选码如下:
{course_id, sec_id, semester, year}
BCNF分解如下:
course_id → title, dept_name, credits,但是course_id 不是超码,我们将class 分解为:
― course(course_id, title, dept_name, credits)
― class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id )
course是BCNF,在class-1中,存在依赖building, room_number → capacity ,但是 {building, room_number}不是class-1的超码,将class-1分解为:
― classroom (building, room_number, capacity)
― section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
此时classroom和section是BCNF范式。
但是,BCNF分解不总是保持依赖的,例:
因此,我们并不总能满足这三个设计目标:
- 无损连接
- BCNF
- 保持依赖
3NF(常用)
因为BCNF不保持依赖,所以需要定义一种较弱的范式,称为第三范式(3NF),一般来说,数据库只需满足第三范式(3NF)就行了。
第三范式在BCNF范式上多了一个可选择的条件,下列条件中至少一个成立,就属于第三范式:
超码: 一个或多个属性的集合,这些属性可以让我们在一个实体集中唯一地标识一个实体
候选码:一个或多个属性的集合,能够唯一标识一个元组,且它的真子集不能唯一标识元组。
主码(主键):从所有候选码中选择一个,作为主码。例如:学生关系(学号,身份证号,姓名,院系,专业,性别 ,生日),有两个候选码:【学号】和【身份证号】,我们可以选择学号为主码,也可以选择身份证号为主码(当然,一般还是选择学号为主码)。
属性:上例中:学号、身份证号、姓名。。。都是学生的属性。
主属性:主属性指的是候选码中的属性。上例中的学号、身份证号都可以称为主属性。选课(学号,课程号),此关系的候选码只有一个,为:【学号、课程号】,故主属性有:学号、课程号。
以上三个规则通俗点说就是:在一个数据库R的关系中,如果关系 α \alpha α能推导出 β \beta β,则要么 β \beta β是 α \alpha α的子集,要么 α \alpha α是R的超码,要么从关系 α \alpha α中推导出的属性是主属性(包含在候选码中)。
例:
3NF分解算法:
求出所有依赖的正则覆盖
将所有的 α \alpha α→ β \beta β组成新的关系 R i = ( α , β ) R_i=(\alpha,\beta) Ri=(α,β)
遍历所有的关系 R i R_i Ri
2.1 如果 R i R_i Ri不包含候选码,则添加随意一个候选码;
2.2 如果 R i R_i Ri是其他模式的子集,将其删除
3NF示例:
关系模式:cust_banker_branch = (customer_id, employee_id, branch_name, type )
函数依赖:
- customer_id, employee_id → branch_name, type
- employee_id → branch_name
- customer_id, branch_name → employee_id
候选码为(customer_id, employee_id)
- 计算正则覆盖:
branch_name 在第一个函数依赖中是多余的,没有其他的多余属性,因此,我们得到
FC = ― customer_id, employee_id → type ― employee_id→branch_name ― customer_id, branch_name → employee_id
- 通过for循环,我们得到以下子关系模式:
- (customer_id, employee_id, type)
- (employee_id, branch_name)
- (customer_id, branch_name, employee_id)
- 由于每个关系都包含原关系模式的候选码,分解到此为止
- 在循环结束后,检查并删除模式。如(employee_id, branch_name)是其他模式的子集,应该删除。
- 最后,得到3NF分解的子关系模式:
(customer_id, employee_id, type)(customer_id, branch_name, employee_id)
虽然平时开发中满足第三范式就行了,但是我们还是需要了解一下第三范式的不足:
多值依赖
4NF(不常用)
有时属于BCNF的模式仍然未充分规范化,考虑数据库 classes(course, teacher, book) 定义(c,t,b) ∈ \in ∈classes,意思是教师t 可以教课程c,而b是需用于课程c 的教材,数据库将为每门课程列出能讲授该课程的教师的集合,以及需用的书的集合(不管谁讲授该课),course: teacher =1:n,course: book = 1:n,teacher和book是多值属性 , 并且teacher和book相互独立,如下图所示:
该表中(course, teacher, book)是唯一的键,因此该关系模式属于BCNF,但是该表存在冗余,例如Sara是能教数据库的新教师,必须插入两条元组
(database, Sara, DB Concepts)(database, Sara, Ullman)
因此,最好将classes 分解成:
在前面的例子中:
course→→teacher (→→表示多值决定)course→→book
对于多值决定的通俗解释就是:给定Y (course)的特定值,则有一个Z (teacher)值的集合和一个W (book)值的集合与之相关联,而这两个集合在某种意义上是相互独立的。
关系模式R关于函数依赖及多值依赖集合D属于4NF当且仅当有形如 α → → β \alpha→→\beta α→→β的多值依赖,下列至少一个成立:
- β ⊆ α \beta\subseteq\alpha β⊆α或 β ∪ α = R \beta\cup\alpha=R β∪α=R
- α \alpha α是模式R的超码
4NF的通俗解释是:在一个数据库R的关系中,如果关系 α \alpha α多值决定 β \beta β,则要么 β \beta β是 α \alpha α的子集,要么 α \alpha α是R的超码。
4NF的分解算法如下:
- 找出关系中的多值决定,例如A→→B
- 如果A不是超码或者B不是A的子集,则创建新的关系(A,B),并将B从原表中删除
- 直到找不出违反以上两个规则的表
例:
候选码为(A,B,C,G)。R不属于4NF,因为A→→B,A不是R的超码
将R分解为:
R 2 R_2 R2中,CG→→H,而CG不是超码,将 R 2 R_2 R2分解为:
至此,完成了4NF的分解。