数学建模—层次分析法相关概念
层次分析法主要解决评价类问题,比如,选择那种方案更好,谁更优秀
评价类问题可用打分解决,将选择条件分成不同的指标,权值和为一
同颜色的单元格合为1,表示某一因素所占的权重
层次分析法步骤
- 1.分析系统中各因素的关系,建立层次结构
使用层次分析法一定要放上面的这个图到论文中哦
- 2.构造判断矩阵
目标层—准则层
准则层—方案层
其中的数据自己填即可,但不要说是怎么来的
- 3.由判断矩阵计算被比较元素对于该准则的相对权重,并要通过一致性检验
建议用三种方法来计算(在文章中写为保证结果的稳健性,使用三种方法分别求权值,再根
- 4.计算各层元素对系统目标的合成权重,并排序
具体的步骤及细节如何确定评价类问题
出现确定评价指标,形成评价体系等字样
解决评价类问题,首先想三点
评价的目标是什么
为了达到目标有哪几种方案
评价的准则或指标(背景材料,常识和网上搜索):去知网找+自己想…
如何确定权值建立矩阵
使用判断矩阵(正互反矩阵):对角线全为一的倒数对称矩阵,每行和每列均为指标或是方案
其中一致性矩阵最为特殊,其特点:各行(各列之间成倍数关系)
一致性检验
在使用判断矩阵求权值之前一定要进行一致性检验
权值的计算
算术平均法
将判断矩阵按列归一化,按行求和,再求平均
几何平均法
将A的元素按照行相乘得到一个新的列向量,将新的向量的每个分量开n次方,对该列向量进行归一化即可得到权重向量
特征值法(使用最多)
求出最大特征值以及对应的特征向量,对其特征向量做归一化处理
一致矩阵计算权重
随便选择一列,来计算所占的比值(一定要归一化处理)
判断矩阵算权重
所有列都像一致矩阵进行计算,再平均
层次分析法的局限性
- 评价决策太多
- 决策层的数据已知
层次分析法的拓展
若方与准则的对应不是一一对应,只需将不对应的方案的权值设为0
Matlab代码
此代码来自清风,感谢
%% 先对判断矩阵进行一致性检验,然后再计算权重,因为只有判断矩阵通过了一致性检验,其权重才是有意义的。%% 只有非一致矩阵的判断矩阵才需要进行一致性检验。%% 输入判断矩阵clear;clcdisp('请输入判断矩阵A: ')% A = input('判断矩阵A=')A =[1 1 4 1/3 3; 1 1 4 1/3 3; 1/4 1/4 1 1/3 1/2; 3 3 3 1 3; 1/3 1/3 2 1/3 1]% matlab矩阵有两种写法,可以直接写到一行:% [1 1 4 1/3 3;1 1 4 1/3 3;1/4 1/4 1 1/3 1/2;3 3 3 1 3;1/3 1/3 2 1/3 1]% 也可以写成多行:% 两行之间以分号结尾(最后一行的分号可加可不加),同行元素之间以空格(或者逗号)分开。%% 方法1:算术平均法求权重% 第一步:将判断矩阵按照列归一化(每一个元素除以其所在列的和)Sum_A = sum(A)[n,n] = size(A) % 也可以写成n = size(A,1)% 因为我们的判断矩阵A是一个方阵,所以这里的r和c相同,我们可以就用同一个字母n表示SUM_A = repmat(Sum_A,n,1) %repeat matrix的缩写% 另外一种替代的方法如下: SUM_A = []; for i = 1:n %循环哦,这一行后面不能加冒号(和Python不同),这里表示循环n次 SUM_A = [SUM_A; Sum_A] endclc;ASUM_AStand_A = A ./ SUM_A% 这里我们直接将两个矩阵对应的元素相除即可% 第二步:将归一化的各列相加(按行求和)sum(Stand_A,2)% 第三步:将相加后得到的向量中每个元素除以n即可得到权重向量disp('算术平均法求权重的结果为:');disp(sum(Stand_A,2) / n)% 首先对标准化后的矩阵按照行求和,得到一个列向量% 然后再将这个列向量的每个元素同时除以n即可(注意这里也可以用./哦)%% 方法2:几何平均法求权重% 第一步:将A的元素按照行相乘得到一个新的列向量clc;APrduct_A = prod(A,2)% prod函数和sum函数类似,一个用于乘,一个用于加 dim = 2 维度是行% 第二步:将新的向量的每个分量开n次方Prduct_n_A = Prduct_A .^ (1/n)% 这里对每个元素进行乘方操作,因此要加.号哦。 ^符号表示乘方哦 这里是开n次方,所以我们等价求1/n次方% 第三步:对该列向量进行归一化即可得到权重向量% 将这个列向量中的每一个元素除以这一个向量的和即可disp('几何平均法求权重的结果为:');disp(Prduct_n_A ./ sum(Prduct_n_A))%% 方法3:特征值法求权重% 第一步:求出矩阵A的最大特征值以及其对应的特征向量clc[V,D] = eig(A) %V是特征向量, D是由特征值构成的对角矩阵(除了对角线元素外,其余位置元素全为0)Max_eig = max(max(D)) %也可以写成max(D(:))哦~% 那么怎么找到最大特征值所在的位置了? 需要用到find函数,它可以用来返回向量或者矩阵中不为0的元素的位置索引。% 那么问题来了,我们要得到最大特征值的位置,就需要将包含所有特征值的这个对角矩阵D中,不等于最大特征值的位置全变为0% 这时候可以用到矩阵与常数的大小判断运算D == Max_eig[r,c] = find(D == Max_eig , 1)% 找到D中第一个与最大特征值相等的元素的位置,记录它的行和列。% 第二步:对求出的特征向量进行归一化即可得到我们的权重V(:,c)% 取出特征向量(列向量)disp('特征值法求权重的结果为:');disp( V(:,c) ./ sum(V(:,c)) )% 我们先根据上面找到的最大特征值的列数c找到对应的特征向量,然后再进行标准化。%% 计算一致性比例CRclcCI = (Max_eig - n) / (n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59]; %注意哦,这里的RI最多支持 n = 15CR=CI/RI(n);disp('一致性指标CI=');disp(CI);disp('一致性比例CR=');disp(CR);if CR<0.10 disp('因为CR = 0.10,因此该判断矩阵A需要进行修改!');end