目录

第一章:逻辑回归的应用场景

第二章:逻辑回归的原理

1.输入

2.Sigmoid函数

3.损失函数

4.优化损失

采用梯度下降:

第三章 逻辑回归应用案例

1.数据集

2.具体流程

1.读取数据

2.缺失值处理

3.划分数据集

4.标准化

5.预估器流程

6.模型评估

7.结果展示

第四章 分类评估算法

1.分类的评估方法——精确率与召回率

精确率:

召回率:

F1-score

2.分类的评估方法——ROC曲线和AUC指标


第一章:逻辑回归的应用场景

  • 广告点击率
  • 是否为垃圾邮件
  • 是否患病
  • 金融诈骗
  • 虚假账号

看到上面的例子,我们可以发现其中的特点,那就是都属于两个类别之间的判断。逻辑回归就是解决二分类问题的利器。

注意:逻辑回归虽然名字中有回归二字,但是它不是回归算法,而是分类算法。

第二章:逻辑回归的原理

1.输入

这是线性回归输出的结果,我们一般可以写成矩阵形式。如下:

权重和偏置分别用矩阵表示之后,将上面的式子可以写成下面的:

重点:逻辑回归的输入就是一个线性回归的结果。

2.Sigmoid函数

图像为:

观察该图像,自变量取值范围是(-∞,+∞),因变量取值范围为(0,1),意思是无论自变量取值多少,都可以通过sigmoid函数映射到(0,1)之间。

总结:sigmoid函数,会把线性回归的结果映射到【0,1】之间,假设0.5为阈值,默认会把小于0.5的为0,大于0.5的为1,这样就可以分类了

假设:预测函数为:

其中

以上两式的意思是,先把线性回归的结果用矩阵表示,在将表示的结果放到sigmoid函数当中。

分类任务:

理解:以丢硬币的概率举例,假如正面的概率是0.7,那么反面的概率是1-0.7=0.3

将上面两个式子进行整合,得到:

这个式子的特点,当y=0的时候,整体会等于右边这个式子,当y=1的时候,整体会等于左边这个式子。

3.损失函数

为求出好的逻辑回归,引出损失函数 :

①损失函数是体现“预测值”和“真实值”,相似程度的函数

②损失函数越小,模型越好

逻辑回归的损失,称之为对数似然损失,公式如下:

这个式子也不陌生,将上面整合的式子,取对数,原先是相乘,取对数之后会相加,指数也可以移到前面。

假定样本与样本之间相互独立,那么整个样本集生成的概率即为所有样本生成概率的乘积,再将公式对数化,便可得到如下公式:

举例:求损失

其中,y代表真实结果,h(x)或者1-h(x)表示的是逻辑回归结果(也是预测值),将值带入即可得到。

4.优化损失

采用梯度下降:

理解:α为学习速率,需要手动指定,α旁边的整体表示方向

沿着这个函数下降的方向找,最后就能找到山谷的最低点,然后更新W值

使用:面对训练数据规模十分庞大的任务 ,能够找到较好的结果

图像表示如下:

就是不断的缩小自身的值,最后找到最低点。

第三章 逻辑回归应用案例

1.数据集

原始数据集下载

网址:Index of /ml/machine-learning-databases/breast-cancer-wisconsin

打开之后,下载红色标注的两个。

其中data里面是数据,共699条样本,共11列数据,第一列用语检 索的id,后9列分别是与肿瘤相关的医学 特征,最后一列表示肿瘤类型的数值。包含16个缺失值,用”?”标出。

names里面是对data文件的描述,主要是对data里面每列的说明,最后一列是类别。

2.具体流程

1.读取数据

需要注意的是数据和列明分开了,因此在进行读取的时候,要一块读取。

import pandas as pdimport numpy as np# 1.读取数据path = "breast-cancer-wisconsin.data"column_name = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',                   'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',                   'Normal Nucleoli', 'Mitoses', 'Class']data = pd.read_csv(path, names=column_name)# print(data)

2.缺失值处理

# 2、缺失值处理# 1)替换-》np.nandata = data.replace(to_replace="" />

代码还未结束,后面还有评估代码

第四章 分类评估算法

1.分类的评估方法------精确率与召回率

我们往往并不关注准确率,而是关注癌症患者中癌症患者有没有检测出来,于是就有了精确率与召回率。

在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵。

精确率:

预测结果为正例样本中真实结果为正例的比例,在混淆矩阵中展示情况为:

召回率:

真实结果为正例的样本中预测结果为正例的比例,在混淆矩阵中展示情况为:

总结:

精确率是预测结果的正例中有多少是真正预测正确的

召回率是真实结果的正例有多少被预测对了

以上就是精确率和召回率,现在介绍F1-score

F1-score

反映了模型的稳健型,F1值大的话,精确率和召回率也大

现在用代码实现精确率、召回率和F1-score

# 查看精确率、召回率、F1-scorefrom sklearn.metrics import classification_reportreport = classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"])print(report)

结果为:

在引入ROC曲线和AUC指标之前,举个样本不均衡的例子

思考?

假设这样一个情况,如果99个样本癌症,1个样本非癌症,不管怎样我全都预测正例(默认癌症为正例)

将这写信息写入混淆矩阵中,如下:

分别计算:

准确率:99%

精确率:99/(99+1)=99%

召回率:99/(99+0)=100%

F1-score:2*99%*100%/99%+100%=99.497487%

可以看出,这是一个不负责的模型,根本原因在于样本不均衡,正例太多,反例太少。引入ROC曲线和AUC指标。

2.分类的评估方法------ROC曲线和AUC指标

在引入ROC曲线和AUC指标之前,还要了解TPR与FPR。

TPR = TP / (TP + FN)

所有真实类别为1的样本中,预测类别为1的比例

FPR = FP / (FP + TN)

所有真实类别为0的样本中,预测类别为1的比例

分类的评估方法------ROC曲线和AUC指标

蓝色的线就是ROC曲线,AUC指标是ROC曲线与纵轴和横轴的面积。

现在介绍这张图:

ROC曲线的横轴就是FPRate,纵轴就是TPRate,当二者相等时,表示的意义则是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的,此时AUC为0.5(即随机猜测)

AUC的最小值为0.5,最大值为1,取值越高越好

AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。

0.5

结论:

最终AUC的范围在[0.5, 1]之间,并且越接近1越好。

通过代码实现,计算ROC曲线面积,即AUC指标:

# y_true:每个样本的真实类别,必须为0(反例),1(正例)标记# 将y_test 转换成 0 1y_true = np.where(y_test > 3, 1, 0)from sklearn.metrics import roc_auc_scoreprint("AUC指标:",roc_auc_score(y_true, y_predict))

其结果展示:

总结:

AUC只能用来评价二分类

AUC非常适合评价样本不平衡中的分类器性能

现在知道了ROC曲线和AUC指标,再回到前面提到的样本不均衡的例子,即思考那个地方。

TPR:99/99+0=100%

FPR:1/1+0=100%

TPR=FPR

AUC=0.5

对于这种样本不均衡的情况下,AUC指标是0.5,表明这个模型很差。

注:

说明,以上内容来自于黑马程序员机器学习视频的学习。

以上内容也是机器学习课程老师留的作业,原先是PPT形式,觉得整体上比较完整,因此将此发到博客上,让以后的自己和他人学习。2022.6.16