文章目录
- 摘要
- 安装包
- 安装timm
- 安装 grad-cam
- 数据增强Cutout和Mixup
- EMA
- 项目结构
- 计算mean和std
- 生成数据集
摘要
论文翻译:https://wanghao.blog.csdn.net/article/details/129485972?spm=1001.2014.3001.5502
官方源码: https://github.com/JierunChen/FasterNet
FasterNet全新的神经网络家族,在多个处理平台上运行速度更快,精度更高,优于MobileVit等网络,基于新提出新的Partial卷积(PConv),大型网络FasterNet-L达到了83.5%的top-1精度,与Swin-B相当,同时在GPU上具有更高推断吞吐量,以及在CPU上节省42%的计算时间。网络架构如下:
这篇文章主要讲解如何使用FasterNet完成图像分类任务,接下来我们一起完成项目的实战。本例选用的模型是fasternet_s,在植物幼苗数据集上实现了96%的准确率。
通过这篇文章能让你学到:
- 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
- 如何实现FasterNet模型实现训练?
- 如何使用pytorch自带混合精度?
- 如何使用梯度裁剪防止梯度爆炸?
- 如何使用DP多显卡训练?
- 如何绘制loss和acc曲线?
- 如何生成val的测评报告?
- 如何编写测试脚本测试测试集?
- 如何使用余弦退火策略调整学习率?
- 如何使用AverageMeter类统计ACC和loss等自定义变量?
- 如何理解和统计ACC1和ACC5?
- 如何使用EMA?
- 如果使用Grad-CAM 实现热力图可视化?
如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:
计算mean和std
为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:
from torchvision.datasets import ImageFolderimport torchfrom torchvision import transformsdef get_mean_and_std(train_data): train_loader = torch.utils.data.DataLoader( train_data, batch_size=1, shuffle=False, num_workers=0, pin_memory=True) mean = torch.zeros(3) std = torch.zeros(3) for X, _ in train_loader: for d in range(3): mean[d] += X[:, d, :, :].mean() std[d] += X[:, d, :, :].std() mean.div_(len(train_data)) std.div_(len(train_data)) return list(mean.numpy()), list(std.numpy())if __name__ == '__main__': train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor()) print(get_mean_and_std(train_dataset))
数据集结构:
运行结果:
([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])
把这个结果记录下来,后面要用!
生成数据集
我们整理还的图像分类的数据集结构是这样的
data├─Black-grass├─Charlock├─Cleavers├─Common Chickweed├─Common wheat├─Fat Hen├─Loose Silky-bent├─Maize├─Scentless Mayweed├─Shepherds Purse├─Small-flowered Cranesbill└─Sugar beet
pytorch和keras默认加载方式是ImageNet数据集格式,格式是
├─data│ ├─val│ │ ├─Black-grass│ │ ├─Charlock│ │ ├─Cleavers│ │ ├─Common Chickweed│ │ ├─Common wheat│ │ ├─Fat Hen│ │ ├─Loose Silky-bent│ │ ├─Maize│ │ ├─Scentless Mayweed│ │ ├─Shepherds Purse│ │ ├─Small-flowered Cranesbill│ │ └─Sugar beet│ └─train│ ├─Black-grass│ ├─Charlock│ ├─Cleavers│ ├─Common Chickweed│ ├─Common wheat│ ├─Fat Hen│ ├─Loose Silky-bent│ ├─Maize│ ├─Scentless Mayweed│ ├─Shepherds Purse│ ├─Small-flowered Cranesbill│ └─Sugar beet
新增格式转化脚本makedata.py,插入代码:
import globimport osimport shutilimage_list=glob.glob('data1/*/*.png')print(image_list)file_dir='data'if os.path.exists(file_dir): print('true') #os.rmdir(file_dir) shutil.rmtree(file_dir)#删除再建立 os.makedirs(file_dir)else: os.makedirs(file_dir)from sklearn.model_selection import train_test_splittrainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)train_dir='train'val_dir='val'train_root=os.path.join(file_dir,train_dir)val_root=os.path.join(file_dir,val_dir)for file in trainval_files: file_class=file.replace("\\","/").split('/')[-2] file_name=file.replace("\\","/").split('/')[-1] file_class=os.path.join(train_root,file_class) if not os.path.isdir(file_class): os.makedirs(file_class) shutil.copy(file, file_class + '/' + file_name)for file in val_files: file_class=file.replace("\\","/").split('/')[-2] file_name=file.replace("\\","/").split('/')[-1] file_class=os.path.join(val_root,file_class) if not os.path.isdir(file_class): os.makedirs(file_class) shutil.copy(file, file_class + '/' + file_name)
完成上面的内容就可以开启训练和测试了。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END