COLMAP利用已知相机内外参重建NeRF的blender模型

文章目录

  • 前言
  • 一、数据准备
  • 二、从blender数据构造colmap数据集
  • 三、COLMAP重建流程
    • 1. 抽取图像特征
    • 2. 导入指定相机内参
    • 3. 特征匹配
    • 4. 三角测量
    • 5. 使用指定相机参数进行稠密重建
    • 6. 立体匹配
    • 7. 稠密点云融合
    • 8. 网格重建
  • 总结

前言

本文的目的是根据已知相机参数的blender模型,使用colmap进行稀疏重建和稠密重建。使用的blender数据是NeRF提供的synthetic数据集中的lego模型,其中的几张图片如下:
图片[1] - COLMAP利用已知相机内外参重建NeRF的blender模型 - MaxSSL图片[2] - COLMAP利用已知相机内外参重建NeRF的blender模型 - MaxSSL图片[3] - COLMAP利用已知相机内外参重建NeRF的blender模型 - MaxSSL图片[4] - COLMAP利用已知相机内外参重建NeRF的blender模型 - MaxSSL


一、数据准备

文件夹应按如下层级组织:

 E:\rootpath ├─created │  └─sparse │   +── cameras.txt │   +── images.txt │   +── points3D.txt ├─dense ├─images │   +── r_0.png │   +── r_1.png │   +── ... ├─model └─triangulated     └─sparse +── transforms_train.json  +── blender_camera2colmap.py  +── transform_colmap_camera.py 

其中 created/sparse 文件夹下的 cameras.txt 对应我们指定的相机内参,images.txt 对应每张图片的相机外参信息,points3D.txt 对应稠密重建需要用到的稀疏点云。 dense 文件夹下保存colmap稠密重建结果,images 文件夹下存放输入的图片,也就是NeRF的训练视图, model 文件夹下存放colmap导出的稀疏重建结果,triangulated/sparse 文件夹下保存colmap稀疏重建结果,transforms_train.json 是NeRF blender数据集提供的真实的相机内外参数据,最后两个python文件是后面要用到的脚本。

二、从blender数据构造colmap数据集

这一步是为了读取NeRF的blender相机参数数据,转换成colmap可以使用的数据格式。blender相机参数采用右手坐标系,相机的位姿用于从相机坐标系向世界坐标系转换,以旋转矩阵 R 和平移向量 T 的格式给出;colmap相机参数采用opecv格式的坐标系,相机的位姿用于从世界坐标系向相机坐标系转换,以四元数 Quat 和平移向量 T 的格式给出,因此需要手动进行转换以获得cameras.txtimages.txtpoints3D.txt。三个文件各自的格式规定如下:

cameras.txt

# Camera list with one line of data per camera:# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[fx,fy,cx,cy]# Number of cameras: 11 PINHOLE 800 800 1111.1110311937682 1111.1110311937682 400.0 400.0

images.txt

# Image list with two lines of data per image:# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME# POINTS2D[] as (X, Y, POINT3D_ID)# Number of images: 100, mean observations per image: 1001 0.0041 0.0056 -0.8064 0.5919 6.3306e-10 -5.1536e-08 4.0311 1 r_0.png# Make sure every other line is left empty2 0.1086 0.15132 -0.7980 0.5729 4.9764e-08 -2.7316e-08 4.0311 1 r_1.png3 0.5450 0.6810 -0.3817 0.3055 -1.2894e-07 -2.6036e-08 4.0311 1 r_10.png

points3D.txt

# 3D point list with one line of data per point:# POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)# Number of points: 12888, mean track length: 4.5869025450031033944 -0.3789 0.5152 -0.1104 58 65 88 0.0692 13 521 49 537 3 4461054 -0.1167 -0.3606 -0.0849 180 176 187 0.2641 13 1285 49 1440 3 13075 -0.1028 -0.4174 0.8981 23 18 7 0.0205 65 33 1 23

完成该转换的 blender_camera2colmap.py 脚本内容如下:

# 该脚本是为了从blender数据集的tranforms_train.json构造colmap的相机参数和图片参数数据集,以便使用指定相机视角的colmap进行重建。# 参考:https://www.cnblogs.com/li-minghao/p/11865794.html# 运行方法:python blender_camera2colmap.pyimport numpy as npimport jsonimport osimport imageioimport math# TODO: change image sizeH = 800W = 800blender2opencv = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])# 注意:最后输出的图片名字要按自然字典序排列,例:0, 1, 100, 101, 102, 2, 3...因为colmap内部是这么排序的fnames = list(sorted(os.listdir('images')))fname2pose = {}with open('transforms_train.json', 'r') as f:    meta = json.load(f)fx = 0.5 * W / np.tan(0.5 * meta['camera_angle_x'])  # original focal lengthif 'camera_angle_y' in meta:    fy = 0.5 * H / np.tan(0.5 * meta['camera_angle_y'])  # original focal lengthelse:    fy = fxif 'cx' in meta:    cx, cy = meta['cx'], meta['cy']else:    cx = 0.5 * W    cy = 0.5 * Hwith open('created/sparse/cameras.txt', 'w') as f:    f.write(f'1 PINHOLE {W} {H} {fx} {fy} {cx} {cy}')    idx = 1    for frame in meta['frames']:        fname = frame['file_path'].split('/')[-1]        if not (fname.endswith('.png') or fname.endswith('.jpg')):            fname += '.png'        # blend到opencv的转换:y轴和z轴方向翻转        pose = np.array(frame['transform_matrix']) @ blender2opencv        fname2pose.update({fname: pose})with open('created/sparse/images.txt', 'w') as f:    for fname in fnames:        pose = fname2pose[fname]        # 参考https://blog.csdn.net/weixin_44120025/article/details/124604229:colmap中相机坐标系和世界坐标系是相反的        # blender中:world = R * camera + T; colmap中:camera = R * world + T        # 因此转换公式为        # R’ = R^-1        # t’ = -R^-1 * t        R = np.linalg.inv(pose[:3, :3])        T = -np.matmul(R, pose[:3, 3])        q0 = 0.5 * math.sqrt(1 + R[0, 0] + R[1, 1] + R[2, 2])        q1 = (R[2, 1] - R[1, 2]) / (4 * q0)        q2 = (R[0, 2] - R[2, 0]) / (4 * q0)        q3 = (R[1, 0] - R[0, 1]) / (4 * q0)        f.write(f'{idx} {q0} {q1} {q2} {q3} {T[0]} {T[1]} {T[2]} 1 {fname}\n\n')        idx += 1with open('created/sparse/points3D.txt', 'w') as f:   f.write('')

直接在根目录 rootpath 下运行

python blender_camera2colmap.py

即可获得 created/sparse 文件下所需的内容。

三、COLMAP重建流程

1. 抽取图像特征

colmap feature_extractor --database_path database.db --image_path images

终端输出示例如下:

==============================================================================Feature extraction==============================================================================Processed file [1/100]  Name:            r_0.png  Dimensions:      800 x 800  Camera:          #1 - SIMPLE_RADIAL  Focal Length:    960.00px  Features:        2403Processed file [2/100]  Name:            r_1.png  Dimensions:      800 x 800  Camera:          #2 - SIMPLE_RADIAL  Focal Length:    960.00px  Features:        2865Processed file [3/100]....................Elapsed time: 0.075 [minutes]

2. 导入指定相机内参

前一步colmap获得了估计的相机内参,但我们有真实的相机内参,所以将colmap估出来的相机内参提环成我们自己的,使用的 transform_colmap_camera.py 脚本内容如下:

# This script is based on an original implementation by True Price.# 用于手动从database.db中读取相机参数并更改为cameras.txt中的相机参数# 参考:https://www.cnblogs.com/li-minghao/p/11865794.htmlimport sysimport numpy as npimport sqlite3IS_PYTHON3 = sys.version_info[0] >= 3MAX_IMAGE_ID = 2**31 - 1CREATE_CAMERAS_TABLE = """CREATE TABLE IF NOT EXISTS cameras (    camera_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,    model INTEGER NOT NULL,    width INTEGER NOT NULL,    height INTEGER NOT NULL,    params BLOB,    prior_focal_length INTEGER NOT NULL)"""CREATE_DESCRIPTORS_TABLE = """CREATE TABLE IF NOT EXISTS descriptors (    image_id INTEGER PRIMARY KEY NOT NULL,    rows INTEGER NOT NULL,    cols INTEGER NOT NULL,    data BLOB,    FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)"""CREATE_IMAGES_TABLE = """CREATE TABLE IF NOT EXISTS images (    image_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,    name TEXT NOT NULL UNIQUE,    camera_id INTEGER NOT NULL,    prior_qw REAL,    prior_qx REAL,    prior_qy REAL,    prior_qz REAL,    prior_tx REAL,    prior_ty REAL,    prior_tz REAL,    CONSTRAINT image_id_check CHECK(image_id >= 0 and image_id < {}),    FOREIGN KEY(camera_id) REFERENCES cameras(camera_id))""".format(MAX_IMAGE_ID)CREATE_TWO_VIEW_GEOMETRIES_TABLE = """CREATE TABLE IF NOT EXISTS two_view_geometries (    pair_id INTEGER PRIMARY KEY NOT NULL,    rows INTEGER NOT NULL,    cols INTEGER NOT NULL,    data BLOB,    config INTEGER NOT NULL,    F BLOB,    E BLOB,    H BLOB,    qvec BLOB,    tvec BLOB)"""CREATE_KEYPOINTS_TABLE = """CREATE TABLE IF NOT EXISTS keypoints (    image_id INTEGER PRIMARY KEY NOT NULL,    rows INTEGER NOT NULL,    cols INTEGER NOT NULL,    data BLOB,    FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)"""CREATE_MATCHES_TABLE = """CREATE TABLE IF NOT EXISTS matches (    pair_id INTEGER PRIMARY KEY NOT NULL,    rows INTEGER NOT NULL,    cols INTEGER NOT NULL,    data BLOB)"""CREATE_NAME_INDEX = \    "CREATE UNIQUE INDEX IF NOT EXISTS index_name ON images(name)"CREATE_ALL = "; ".join([    CREATE_CAMERAS_TABLE,    CREATE_IMAGES_TABLE,    CREATE_KEYPOINTS_TABLE,    CREATE_DESCRIPTORS_TABLE,    CREATE_MATCHES_TABLE,    CREATE_TWO_VIEW_GEOMETRIES_TABLE,    CREATE_NAME_INDEX])def array_to_blob(array):    if IS_PYTHON3:        return array.tostring()    else:        return np.getbuffer(array)def blob_to_array(blob, dtype, shape=(-1,)):    if IS_PYTHON3:        return np.fromstring(blob, dtype=dtype).reshape(*shape)    else:        return np.frombuffer(blob, dtype=dtype).reshape(*shape)class COLMAPDatabase(sqlite3.Connection):    @staticmethod    def connect(database_path):        return sqlite3.connect(database_path, factory=COLMAPDatabase)    def __init__(self, *args, **kwargs):        super(COLMAPDatabase, self).__init__(*args, **kwargs)        self.create_tables = lambda: self.executescript(CREATE_ALL)        self.create_cameras_table = \            lambda: self.executescript(CREATE_CAMERAS_TABLE)        self.create_descriptors_table = \            lambda: self.executescript(CREATE_DESCRIPTORS_TABLE)        self.create_images_table = \            lambda: self.executescript(CREATE_IMAGES_TABLE)        self.create_two_view_geometries_table = \            lambda: self.executescript(CREATE_TWO_VIEW_GEOMETRIES_TABLE)        self.create_keypoints_table = \            lambda: self.executescript(CREATE_KEYPOINTS_TABLE)        self.create_matches_table = \            lambda: self.executescript(CREATE_MATCHES_TABLE)        self.create_name_index = lambda: self.executescript(CREATE_NAME_INDEX)    def update_camera(self, model, width, height, params, camera_id):        params = np.asarray(params, np.float64)        cursor = self.execute(            "UPDATE cameras SET model=" />

【注意:接下来这一步很重要】
然后选择 “File”->“Export model as txt”,把结果保存在 model 文件夹下,这里包括了colmap稀疏重建估出来的相机内外参和稀疏点云数据。我们把 model/points3D.txt 文件复制到 created/sparse 文件夹下,覆盖掉原来空的 points3D.txt 文件,这是接下来稠密重建需要用到的稀疏点云数据。

接下来运行

colmap image_undistorter --image_path images --input_path created/sparse --output_path dense

终端输出示例如下:

==============================================================================Reading reconstruction============================================================================== => Reconstruction with 100 images and 12906 points==============================================================================Image undistortion==============================================================================Undistorted image found; copying to location: dense\images\r_0.pngUndistorted image found; copying to location: dense\images\r_10.pngUndistorting image [1/100]Undistorted image found; copying to location: dense\images\r_13.pngUndistorted image found; copying to location: dense\images\r_14.png....................Writing reconstruction...Writing configuration...Writing scripts...Elapsed time: 0.002 [minutes]

6. 立体匹配

colmap patch_match_stereo --workspace_path dense

这一步是最耗时的,如果图片多的话,会花费长达几个小时的时间。在lego数据集上大概花费一个小时。终端输出示例如下:

Reading workspace...Reading configuration...Configuration has 100 problems...==============================================================================Processing view 1 / 100 for r_0.png==============================================================================Reading inputs...PatchMatch::Problem-------------------ref_image_idx: 0src_image_idxs: 20 36 80 64 37 61 1 73 58 32 47 19 3 46 57 4 77 53 28 33PatchMatchOptions-----------------max_image_size: -1gpu_index: 0depth_min: 2.2507depth_max: 6.0306window_radius: 5window_step: 1sigma_spatial: 5sigma_color: 0.2num_samples: 15ncc_sigma: 0.6min_triangulation_angle: 1incident_angle_sigma: 0.9num_iterations: 5geom_consistency: 0geom_consistency_regularizer: 0.3geom_consistency_max_cost: 3filter: 0filter_min_ncc: 0.1filter_min_triangulation_angle: 3filter_min_num_consistent: 2filter_geom_consistency_max_cost: 1write_consistency_graph: 0allow_missing_files: 0PatchMatch::Run---------------Initialization: 0.1131s Sweep 1: 0.4373s Sweep 2: 0.3998s Sweep 3: 0.4118s Sweep 4: 0.3944sIteration 1: 1.6447s Sweep 1: 0.4101s Sweep 2: 0.3992s....................Writing geometric output for r_99.pngElapsed time: 61.006 [minutes]

7. 稠密点云融合

colmap stereo_fusion --workspace_path dense --output_path dense/fused.ply

终端输出示例如下:

StereoFusion::Options---------------------mask_path:max_image_size: -1min_num_pixels: 5max_num_pixels: 10000max_traversal_depth: 100max_reproj_error: 2max_depth_error: 0.01max_normal_error: 10check_num_images: 50use_cache: 0cache_size: 32bbox_min: -3.40282e+38 -3.40282e+38 -3.40282e+38bbox_max: 3.40282e+38 3.40282e+38 3.40282e+38Reading workspace...Loading workspace data with 8 threads...Elapsed time: 0.021 [minutes]Reading configuration...Starting fusion with 8 threadsFusing image [1/100] with index 0 in 2.167s (36527 points)Fusing image [2/100] with index 36 in 0.655s (50311 points)Fusing image [3/100] with index 61 in 0.568s (61807 points)....................Number of fused points: 493937Elapsed time: 0.399 [minutes]Writing output: dense/fused.ply

8. 网格重建

这最后一步COLMAP命令行模式下使用起来比较复杂,建议在meshlab软件中操作。首先用meshlab打开 fused.ply

图片[5] - COLMAP利用已知相机内外参重建NeRF的blender模型 - MaxSSL

选择 “Filters”->“Remeshing, Simplification and Reconstruction”->“Surface Reconstruction: Screened Poisson”,参数可以自行调节。

图片[6] - COLMAP利用已知相机内外参重建NeRF的blender模型 - MaxSSL

这里建议将 Adaptive Octree Depth 调为和 Reconstruction Depth 一致。该数值为重建网格的分辨率,设置为 8 8 8即为 25 6 3 256^3 2563的分辨率。点击 **“Apply”**开始重建,在meshlab中观察重建好的mesh效果如下:

图片[7] - COLMAP利用已知相机内外参重建NeRF的blender模型 - MaxSSL

之后选择 “File”->“Export Mesh” 保存重建好的mesh即可。


总结

COLMAP的重建流程比较复杂,最后总结一下所有用到的命令:

0. 构造数据集准备好images里的图片和对应的相机参数文件transforms_train.json,然后python blender_camera2colmap.py1. 抽取图像特征colmap feature_extractor --database_path database.db --image_path images2. 自动导入指定相机内参python transform_colmap_camera.py3. 特征匹配colmap exhaustive_matcher --database_path database.db4. 三角测量colmap point_triangulator --database_path database.db --image_path images --input_path created/sparse --output_path triangulated/sparse5. 使用指定相机参数进行稠密重建先在 colmap gui 中导出points3D.txt覆盖到created/sparse里,然后colmap image_undistorter --image_path images --input_path created/sparse --output_path dense6. 立体匹配 colmap patch_match_stereo --workspace_path dense7. 稠密点云融合colmap stereo_fusion --workspace_path dense --output_path dense/fused.ply8. 网格重建在meshlab使用泊松重建
© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享