前言
nnUNet作为医学图像分割的各项SOTA实现的基础框架,基本是所有医学图像分割的研究者需要掌握的方法。作为一个集成的框架,nnUNet基本上只需将个人的数据集处理成nnUNet所需要的格式即可通过命令进行全流程操作。这里提供本人实现3D nnUNet流程处理的基本步骤及相关代码。
参考链接:
(四:2020.07.28)nnUNet最舒服的训练教程
1 nnUNet安装
nnUNet的安装更详细的细节可见参考链接,这里默认基本的Python和cuda环境已经安装好了
- 第一步:选择一个你能找的路径位置(这很重要),在这个位置打开终端,输入
git clone https://github.com/MIC-DKFZ/nnUNet.git
,将nnUNet的代码下载到这个位置 - 第二步:终端内定位到下载的nnUNet文件夹
cd nnUNet
,或者直接在对应位置打开终端 - 第三步:开始安装,
pip install -e .
2 数据整理
2.1 数据存放形式
首先,nnUNet有自己的一套数据文件夹的存放格式,基本是这个形式:
DATASET,里面有三个文件夹:nnUNet_raw、nnUNet_preprocessed、nnUNet_trained_models,
nnUNet_raw里面有两个文件夹:nnUNet_raw_data和nnUNet_cropped_data
"""创建nnuent的数据文件夹"""import ospath = r'*/DATASET' # 想要存放nnUNet数据、模型的地方os.mkdir(os.path.join(path, 'nnUNet_raw'))os.mkdir(os.path.join(path, 'nnUNet_preprocessed'))os.mkdir(os.path.join(path, 'nnUNet_trained_models'))os.mkdir(os.path.join(path, 'nnUNet_raw', 'nnUNet_raw_data'))os.mkdir(os.path.join(path, 'nnUNet_raw', 'nnUNet_cropped_data'))
确定好存放数据的位置后,修改nnUNet代码里的paths.py文件,将原始的DATASET路径换成自己的:
PS:如果不改代码的话,则默认是需要设置环境变量的,即参考链接里的方式
2.2 数据集转换
① 在nnUNet_raw_data文件夹下创建自己的任务文件夹,格式:TaskXXX_任务名,比如Task101_PC
该文件夹下创建以下文件夹:imagesTr、imagesTs、labelsTr、labelsTs、inferTs,分别是训练数据、测试数据、训练标签、测试标签、测试集推理结果存放;其中前三个是必需要有的
② 把自己的数据集按上述方式放入nnUNet文件夹,注意数据名字需要改成名字_000X的nnUNet格式,X从0开始,代表数据模态
这里提供我处理时的代码,可以依据这个修改
"""创建nnuent需要的文件路径,并将数据复制到对应路径并改名"""import osimport shutilimport numpy as np# 创建文件夹img_tr_path = r'*/DATASET/nnUNet_raw/nnUNet_raw_data/Task101_PC/imagesTr'img_ts_path = r'*/DATASET/nnUNet_raw/nnUNet_raw_data/Task101_PC/imagesTs'label_tr_path = r'*/DATASET/nnUNet_raw/nnUNet_raw_data/Task101_PC/labelsTr'label_ts_path = r'*/DATASET/nnUNet_raw/nnUNet_raw_data/Task101_PC/labelsTs'infer_ts_path = r'*/DATASET/nnUNet_raw/nnUNet_raw_data/Task101_PC/inferTs'if not os.path.isdir(img_tr_path): os.mkdir(img_tr_path) os.mkdir(img_ts_path) os.mkdir(label_tr_path) os.mkdir(label_ts_path) os.mkdir(infer_ts_path)# 获取训练、测试集的ID,按需修改train_id = []test_id = []# 复制数据文件并改成nnunet的命名形式data_folder = r'*'# 个人数据集的文件夹路径for patient_id in train_id: # 预处理文件夹下文件名,我这里有两种数据模态PET/CT,以及一个分割标签mask pet_file = os.path.join(data_folder, str(patient_id)+'_pet_pre.nii.gz') ct_file = os.path.join(data_folder, str(patient_id)+'_ct_pre.nii.gz') mask_file = os.path.join(data_folder, str(patient_id)+'_mask_pre.nii.gz') # nnunet文件夹文件名,nnUNet通过_0000和_0001这种形式分辨多模态输入 pet_new_file = os.path.join(img_tr_path, str(patient_id)+'_image_0000.nii.gz') ct_new_file = os.path.join(img_tr_path, str(patient_id) + '_image_0001.nii.gz') mask_new_file = os.path.join(label_tr_path, str(patient_id) + '_image.nii.gz')# 复制 shutil.copyfile(pet_file, pet_new_file) shutil.copyfile(ct_file, ct_new_file) shutil.copyfile(mask_file, mask_new_file)for patient_id in test_id: # 预处理文件夹下文件名 pet_file = os.path.join(data_folder, str(patient_id) + '_pet_pre.nii.gz') ct_file = os.path.join(data_folder, str(patient_id) + '_ct_pre.nii.gz') mask_file = os.path.join(data_folder, str(patient_id)+'_mask_pre.nii.gz') # nnunet文件夹文件名 pet_new_file = os.path.join(img_ts_path, str(patient_id) + '_image_0000.nii.gz') ct_new_file = os.path.join(img_ts_path, str(patient_id) + '_image_0001.nii.gz') mask_new_file = os.path.join(label_ts_path, str(patient_id) + '_image.nii.gz') # 复制 shutil.copyfile(pet_file, pet_new_file) shutil.copyfile(ct_file, ct_new_file) shutil.copyfile(mask_file, mask_new_file)
③制作dataset.json,nnUNet需要提供一个json文件来描述你的数据集,通过以下代码生成,这个代码nnUNet文件夹中有提供,这里是我修改后的版本,实际需要各自修改后使用
"""创建数据集的json"""import globimport osimport reimport jsonfrom collections import OrderedDictdef list_sort_nicely(l): """ Sort the given list in the way that humans expect. """ def tryint(s): try: return int(s) except: return s def alphanum_key(s): """ Turn a string into a list of string and number chunks. "z23a" -> ["z", 23, "a"] """ return [tryint(c) for c in re.split('([0-9]+)', s)] l.sort(key=alphanum_key) return lpath_originalData = "/data/nas/heyixue_group/PCa//DATASET_nfs/nnUNet_raw/nnUNet_raw_data/Task108_PCa_256/"if not os.path.exists(path_originalData): os.mkdir(path_originalData+"imagesTr/") os.mkdir(path_originalData+"labelsTr/") os.mkdir(path_originalData+"imagesTs/") os.mkdir(path_originalData+"labelsTs/")train_image = list_sort_nicely(glob.glob(path_originalData+"imagesTr/*"))train_label = list_sort_nicely(glob.glob(path_originalData+"labelsTr/*"))test_image = list_sort_nicely(glob.glob(path_originalData+"imagesTs/*"))test_label = list_sort_nicely(glob.glob(path_originalData+"labelsTs/*"))# 文件夹里已经带后缀了,并且有两个模态train_image = ["{}".format(patient_no.split('/')[-1]) for patient_no in train_image]train_label = ["{}".format(patient_no.split('/')[-1]) for patient_no in train_label]test_image = ["{}".format(patient_no.split('/')[-1]) for patient_no in test_image]# 去掉后缀,整合train_real_image = []train_real_label = []test_real_image = []for i in range(0, len(train_image), 2): train_real_image.append(train_image[i].replace('_0000', ''))for i in range(0, len(train_label)): train_real_label.append(train_label[i].replace('_0000', ''))for i in range(0, len(test_image), 2): test_real_image.append(test_image[i])# 输出一下目录的情况,看是否成功print(len(train_real_image), len(train_real_label))print(len(test_real_image), len(test_label))print(train_real_image[0])# -------下面是创建json文件的内容--------------------------# 可以根据你的数据集,修改里面的描述json_dict = OrderedDict()json_dict['name'] = "PC"# 任务名json_dict['description'] = " Segmentation"json_dict['tensorImageSize'] = "3D"json_dict['reference'] = "see challenge website"json_dict['licence'] = "see challenge website"json_dict['release'] = "0.0"# 这里填入模态信息,0表示只有一个模态,还可以加入“1”:“MRI”之类的描述,详情请参考官方源码给出的示例json_dict['modality'] = {"0": "PET", '1': 'CT'}# 这里为label文件中的标签,名字可以按需要命名json_dict['labels'] = {"0": "Background", "1": "cancer"}# 下面部分不需要修改json_dict['numTraining'] = len(train_real_image)json_dict['numTest'] = len(test_real_image)json_dict['training'] = []for idx in range(len(train_real_image)): json_dict['training'].append({'image': "./imagesTr/%s" % train_real_image[idx], "label": "./labelsTr/%s" % train_real_label[idx]})json_dict['test'] = ["./imagesTs/%s" % i for i in test_real_image]with open(os.path.join(path_originalData, "dataset.json"), 'w') as f: json.dump(json_dict, f, indent=4, sort_keys=True)
3 预处理、训练、测试
将自己的NII数据集转换成nnUNet所需要的格式后,即可在命令行中直接输入命令进行流水线操作了
3.1 预处理
nnUNet_plan_and_preprocess -t 101
-t后面的数字即为任务的ID,一般直接使用这个命令进行全部预处理就行,会默认的进行2d、3d_full_res和3d_cascade_fullres三种任务的预处理,如果只想跑单独某一种的预处理的话,需要额外设置其他参数,可以输入nnUNet_plan_and_preprocess -h
查看帮助,这里不详细介绍了
预处理后,还可以自定义nnUNet的分折
nnUNet的默认是随机的五折交叉验证,如果需要用自己定好的分折方式的话,可以通过在预处理结果中创建splits_final.pkl文件进行设定,代码如下
"""把自己设定的分折方式写成nnunet的pkl文件"""import numpy as npfrom collections import OrderedDictimport pickledef write_pickle(obj, file, mode='wb'): with open(file, mode) as f: pickle.dump(obj, f)# 获取内部交叉验证训练集、验证集的id,自己修改这部分Kfold_train_valid_test = {0: {'train': train_ids[0], 'val': train_ids[1]}, 1: {'train': train_ids[2], 'val': train_ids[3]}, 2: {'train': train_ids[4], 'val': train_ids[5]}, 3: {'train': train_ids[6], 'val': train_ids[7]}, 4: {'train': train_ids[8], 'val': train_ids[9]}}splits = []for i in range(5): # 获取想要的分折的结果 train_id = np.sort(np.array(Kfold_train_valid_test[i]['train'], np.uint16)) val_id = np.sort(np.array(Kfold_train_valid_test[i]['val'], np.uint16)) train_keys = np.array([str(id)+'_image' for id in train_id]) test_keys = np.array([str(id)+'_image' for id in val_id]) splits.append(OrderedDict()) splits[-1]['train'] = train_keys splits[-1]['val'] = test_keyssplits_file = r'*/DATASET/nnUNet_preprocessed/Task101_PC/splits_final.pkl'# 保存在预处理结果那里save_pickle = write_picklesave_pickle(splits, splits_file)
3.2 训练
nnUNet_train 3d_fullres nnUNetTrainerV2 101 0
其中101是任务ID,0表示训练第一折(nnUNet的五折是0-4)
训练中断了想断点继续训,后面加个-c:
nnUNet_train 3d_fullres nnUNetTrainerV2 101 0 -c
想训练全部数据,即不分折,折数改为all:
nnUNet_train 3d_fullres nnUNetTrainerV2 101 all
训练最少需要大概8g显存,一轮的时间很慢,一个epoch大概600s(很吃CPU,如果CPU不好的话这个时间会大大增加),默认是训练1000个epoch,时间很慢,等它跑完就好啦,如果需要修改训练的epoch数量(默认1000确实太久了),可以修改这里的代码
3.3 验证&推理&评估
- 验证
正常训练完后会自动进行验证,验证结果在这:
DATASET\nnUNet_trained_models\nnUNet\3d_fullres\Task101_PC\nnUNetTrainerV2__nnUNetPlansv2.1\fold_0 - 推理
nnUNet_predict -i 要预测数据的文件夹路径 -o 输出文件夹路径 -t 101 -m 3d_fullres -f 0
-f 表示第几折,如果不加的话会使用五折的集成(需要五折都跑了) - 评估
nnUNet_evaluate_folder -ref 金标准文件夹 -pred 预测结果文件夹 -l 1
-l 表示要计算的label的类别,正常就是背景-0肿瘤-1,所以设置1,如果有两类就是 -l 1 2,以此类推
这个是nnUNet自带的评估命令,计算分割DSC,可以不用这个,另写代码去算需要的评估指标即可
4 其他
- 本文只说明了3d_fullres的训练,完整的nnUNet流程还需要跑2d和3d级联的,然后进行三种的择优。不过从实际性能来说,一般3d级联≥3d>2d,是否跑其他两种需要自己考虑。推理最优设置是这个,会返回一个最优设置的predict命令
nnUNet_find_best_configuration -m 2d 3d_fullres 3d_lowres 3d_cascade_fullres -t 101
- nnUNet虽然号称全流程的实现方式,但是实际经验发现一些数据的预处理(比如卡阈值)还是需要自己提前做的,不然结果可能不理想
- 对nnUNet更详细的了解可以看花老师的博客,里面有nnUNet的一整套分析,包括论文分析、训练测试和常见问题解答,我也是看这些学习的 花卷汤圆的CSDN博客-医学图像分割
- 另外,由于nnUNet使用命令行进行处理,有时候一直放着等可能会有意外,可以考虑用screen等方式挂到后台 常用screen操作总结