这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助建模

首先我们需要一些贴图素材

贴图素材一般可以在3dtextures网站上找到,这里我找了2份,包含了墙的法线贴图和潮湿地面的法线、透明度、粗糙度贴图

通过kokomi.AssetManager将贴图素材一次性全部加载出来,将它们应用到Mesh上,加上基本的环境光照,即可完成最基本的建模

// 光照const pointLight1 = new THREE.PointLight(config.color, 0.5, 17, 0.8);pointLight1.position.set(0, 2, 0);this.scene.add(pointLight1);...// 网格const aspTex = am.items["asphalt-normal"];aspTex.rotation = THREE.MathUtils.degToRad(90);aspTex.wrapS = aspTex.wrapT = THREE.RepeatWrapping;aspTex.repeat.set(5, 8);const wallMat = new THREE.MeshPhongMaterial({  color: new THREE.Color("#111111"),  normalMap: aspTex,  normalScale: new THREE.Vector2(0.5, 0.5),  shininess: 200,});const wall = new THREE.Mesh(new THREE.BoxGeometry(25, 20, 0.5), wallMat);this.scene.add(wall);wall.position.y = 10;wall.position.z = -10.3;...// 文字const t3d = new kokomi.Text3D(this, config.text, font, {  size: 3,  height: 0.2,  curveSegments: 120,  bevelEnabled: false,});t3d.mesh.geometry.center();const tm = new THREE.Mesh(  t3d.mesh.geometry,  new THREE.MeshBasicMaterial({    color: config.color,  }));this.scene.add(tm);tm.position.y = 1.54;

积水地面

地面上的积水能反射出周围的景色,因此我们将选用kokomi.Reflector来实现反射效果

const mirror = new kokomi.Reflector(new THREE.PlaneGeometry(25, 100));mirror.position.z = -25;mirror.rotation.x = -Math.PI / 2;

普通的反射器仅仅是一面镜子,因此我们要自定义反射器的Shader

涟漪效果

之前逛shadertoy时看到了一个很棒的涟漪特效,就直接拿来用了

// https://www.shadertoy.com/view/4djSRWfloat hash12(vec2 p){    vec3 p3=fract(vec3(p.xyx)*.1031);    p3+=dot(p3,p3.yzx+19.19);    return fract((p3.x+p3.y)*p3.z);}vec2 hash22(vec2 p){    vec3 p3=fract(vec3(p.xyx)*vec3(.1031,.1030,.0973));    p3+=dot(p3,p3.yzx+19.19);    return fract((p3.xx+p3.yz)*p3.zy);}// https://gist.github.com/companje/29408948f1e8be54dd5733a74ca49bb9float map(float value,float min1,float max1,float min2,float max2){    return min2+(value-min1)*(max2-min2)/(max1-min1);}vec2 rippleUv=75.*p*uTexScale;vec2 p0=floor(rippleUv);float rainStrength=map(uRainCount,0.,10000.,3.,.5);if(rainStrength==3.){    rainStrength=50.;}vec2 circles=vec2(0.);for(int j=-MAX_RADIUS;j<=MAX_RADIUS;++j){    for(int i=-MAX_RADIUS;i<=MAX_RADIUS;++i)    {        vec2 pi=p0+vec2(i,j);        #if DOUBLE_HASH        vec2 hsh=hash22(pi);        #else        vec2 hsh=pi;        #endif        vec2 p=pi+hash22(hsh);                float t=fract(.8*iTime+hash12(hsh));        vec2 v=p-rippleUv;        float d=length(v)-(float(MAX_RADIUS)+1.)*t+(rainStrength*.1*t);                float h=1e-3;        float d1=d-h;        float d2=d+h;        float p1=sin(31.*d1)*smoothstep(-.6,-.3,d1)*smoothstep(0.,-.3,d1);        float p2=sin(31.*d2)*smoothstep(-.6,-.3,d2)*smoothstep(0.,-.3,d2);        circles+=.5*normalize(v)*((p2-p1)/(2.*h)*(1.-t)*(1.-t));    }}circles/=float((MAX_RADIUS*2+1)*(MAX_RADIUS*2+1));float intensity=.05*floorOpacity;vec3 n=vec3(circles,sqrt(1.-dot(circles,circles)));vec2 rainUv=intensity*n.xy;

与地面结合

光有涟漪效果也不够,要将它与地面的贴图相结合起来

这里采用了自定义mipmap技术,利用kokomi.PackedMipMapGenerator生成了多个贴图的mipmap

自定义mipmap除了能捆绑贴图外,还有个好处就是可以动态控制贴图的模糊程度

const mipmapper = new kokomi.PackedMipMapGenerator();const mirrorFBO = mirror.getRenderTarget();const mipmapFBO = new kokomi.FBO(this);mirror.material.uniforms.tDiffuse.value = mipmapFBO.rt.texture;this.update(() => {  mipmapper.update(mirrorFBO.texture, mipmapFBO.rt, this.renderer);});
vec2 p=vUv;vec2 texUv=p*uTexScale;texUv+=uTexOffset;float floorOpacity=texture(uOpacityTexture,texUv).r;vec3 floorNormal=texture(uNormalTexture,texUv).rgb*2.-1.;floorNormal=normalize(floorNormal);float roughness=texture(uRoughnessTexture,texUv).r;vec2 finalUv=reflectionUv+floorNormal.xy*uDistortionAmount-rainUv;float level=roughness*uBlurStrength;vec3 col=packedTexture2DLOD(tDiffuse,finalUv,level,uMipmapTextureSize).rgb;

下雨动画生成雨滴

雨滴数量会很多,因此要用到THREE.InstancedMesh来生成实例化网格对象

const rain = new THREE.InstancedMesh(new THREE.PlaneGeometry(), rainMat, count);rain.instanceMatrix.needsUpdate = true;const dummy = new THREE.Object3D();for (let i = 0; i < rain.count; i++) {  dummy.position.set(    THREE.MathUtils.randFloat(-10, 10),    0,    THREE.MathUtils.randFloat(-20, 10)  );  dummy.scale.set(0.03, THREE.MathUtils.randFloat(0.3, 0.5), 0.03);  dummy.updateMatrix();  rain.setMatrixAt(i, dummy.matrix);}rain.rotation.set(-0.1, 0, 0.1);rain.position.set(0, 4, 4);

这里要注意一点:雨滴的方向是始终朝向用户的,为了达成这点就要用billboard方案来实现

vec3 billboard(vec3 v,mat4 view){    vec3 up=vec3(view[0][1],view[1][1],view[2][1]);    vec3 right=vec3(view[0][0],view[1][0],view[2][0]);    vec3 pos=right*v.x+up*v.y;    return pos;}vec3 billboardPos=billboard(transformed,modelViewMatrix);transformed=billboardPos;

下落动画

我们可以给雨滴赋予随机的高度和速度attribute,并在顶点着色器中让它动起来

const progressArr = [];const speedArr = [];for (let i = 0; i < rain.count; i++) {  ...  progressArr.push(Math.random());  speedArr.push(dummy.scale.y * 10);}rain.geometry.setAttribute(  "aProgress",  new THREE.InstancedBufferAttribute(new Float32Array(progressArr), 1));rain.geometry.setAttribute(  "aSpeed",  new THREE.InstancedBufferAttribute(new Float32Array(speedArr), 1));
attribute float aProgress;attribute float aSpeed;uniform float uSpeed;uniform float uHeightRange;vec3 distort(vec3 p){    float y=mod(aProgress-iTime*aSpeed*.25*uSpeed,1.)*uHeightRange-(uHeightRange*.5);    p.y+=y;    return p;}transformed=distort(transformed);

反射效果

创建背景的离屏渲染FBO,将其作为反射的主要材质

const bgFBO = new kokomi.FBO(this, {  width: window.innerWidth * 0.1,  height: window.innerHeight * 0.1,});rainMat.uniforms.uBgRt.value = bgFBO.rt.texture;const fboCamera = this.camera.clone();this.update(() => {  rain.visible = false;  this.renderer.setRenderTarget(bgFBO.rt);  this.renderer.render(this.scene, fboCamera);  this.renderer.setRenderTarget(null);  rain.visible = true;});

在顶点着色器中获取屏幕空间vScreenspace

// https://github.com/Samsy/glsl-screenspacevec2 screenspace(mat4 projectionmatrix,mat4 modelviewmatrix,vec3 position){    vec4 temp=projectionmatrix*modelviewmatrix*vec4(position,1.);    temp.xyz/=temp.w;    temp.xy=(.5)+(temp.xy)*.5;    return temp.xy;}vScreenspace=screenspace(projectionMatrix,modelViewMatrix,transformed);

在片元着色器中采样反射材质

uniform sampler2D uNormalTexture;uniform sampler2D uBgRt;uniform float uRefraction;uniform float uBaseBrightness;varying vec2 vScreenspace;void main(){    vec2 p=vUv;        vec4 normalColor=texture(uNormalTexture,p);        if(normalColor.a<.5){        discard;    }        vec3 normal=normalize(normalColor.rgb);        vec2 bgUv=vScreenspace+normal.xy*uRefraction;    vec4 bgColor=texture(uBgRt,bgUv);        float brightness=uBaseBrightness*pow(normal.b,10.);        vec3 col=bgColor.rgb+vec3(brightness);    col=vec3(p,0.);        gl_FragColor=vec4(col,1.);}

这里有一点要注意:积水地面中要把雨滴的反射去掉,不然会看着很乱

rainFloor.mirror.ignoreObjects.push(rain)

灯光闪烁

setInterval来间歇地设置文字和灯光材质的颜色即可

// flickerconst turnOffLight = () => {  tm.material.color.copy(new THREE.Color("black"));  pointLight1.color.copy(new THREE.Color("black"));};const turnOnLight = () => {  tm.material.color.copy(new THREE.Color(config.color));  pointLight1.color.copy(new THREE.Color(config.color));};let flickerTimer = null;const flicker = () => {  flickerTimer = setInterval(async () => {    const rate = Math.random();    if (rate < 0.5) {      turnOffLight();      await kokomi.sleep(200 * Math.random());      turnOnLight();      await kokomi.sleep(200 * Math.random());      turnOffLight();      await kokomi.sleep(200 * Math.random());      turnOnLight();    }  }, 3000);};flicker();

后期处理

为了让文字灯光看上去更加明亮,可以用Bloom滤镜来照亮文字

由于后期处理中原先renderer的抗锯齿会失效,故用SMAA滤镜来实现抗锯齿

// postprocessingconst composer = new POSTPROCESSING.EffectComposer(this.renderer);this.composer = composer;composer.addPass(new POSTPROCESSING.RenderPass(this.scene, this.camera));// bloomconst bloom = new POSTPROCESSING.BloomEffect({  luminanceThreshold: 0.4,  luminanceSmoothing: 0,  mipmapBlur: true,  intensity: 2,  radius: 0.4,});composer.addPass(new POSTPROCESSING.EffectPass(this.camera, bloom));// antialiasingconst smaa = new POSTPROCESSING.SMAAEffect();composer.addPass(new POSTPROCESSING.EffectPass(this.camera, smaa));

待优化

效果算是基本实现了,但也有很多待优化的点

  1. 添加现实中的雨声
  2. 实现更棒的相机交互
  3. 添加更多的物体

本文转载于:https://juejin.cn/post/7200443454567137336如果对您有所帮助,欢迎您点个关注,我会定时更新技术文档,大家一起讨论学习,一起进步。