目录
0、项目介绍
1、效果展示
2、项目搭建
3、项目代码讲解与介绍
Basics.py
PoseModule.py
Example.py
人体姿态图编辑
4、项目资源
5、项目总结
0、项目介绍
mediapipe中有人体姿态检测的功能,今天我们就将实现最最基础的人体姿态估计项目,它的应用还是有很多的,比如:AI锻炼检测标准、老人跌倒检测等,这些方面其实已经有了很多的参考资料了,当然在我知道的当中用yolo的倒是挺多的。那么今天我们将会通过人物跳舞的视频进行一个姿态的检测。
1、效果展示
可以看见GIF图片中人物跳舞视频检测到的人体姿态骨架。(窗口大小的问题,膝盖下的点没有检测到)
2、项目搭建
如上图,你完全按这个模式照搬过去,完整的视频已经被我拆分好了,大家有兴趣的可以从我的GitHub中获得完整视频与拆分好的视频。
3、项目代码讲解与介绍
Basics.py
import cv2import mediapipe as mpimport timempDraw = mp.solutions.drawing_utilsmpPose = mp.solutions.posepose = mpPose.Pose()cap = cv2.VideoCapture('Pose_videos/02.mp4')pTime = 0while True: success, img = cap.read() imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) results = pose.process(imgRGB) # print(results.pose_landmarks) if results.pose_landmarks: mpDraw.draw_landmarks(img, results.pose_landmarks, mpPose.POSE_CONNECTIONS) for id, lm in enumerate(results.pose_landmarks.landmark): h, w, c = img.shape print(id, lm) cx, cy = int(lm.x * w), int(lm.y * h) cv2.circle(img, (cx, cy), 5, (255, 0, 0), cv2.FILLED)####################################################################################### cTime = time.time() fps = 1 / (cTime - pTime) pTime = cTime cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3) cv2.imshow("Image", img) k=cv2.waitKey(1) if k==27: break
PoseModule.py
import cv2import mediapipe as mpimport timeclass poseDetector(): def __init__(self, mode=False, upBody=False, smooth=True, detectionCon=0.5, trackCon=0.5): self.mode = mode self.upBody = upBody self.smooth = smooth self.detectionCon = detectionCon self.trackCon=trackCon self.mpDraw = mp.solutions.drawing_utils self.mpPose = mp.solutions.pose self.pose = self.mpPose.Pose(self.mode, self.upBody, self.smooth) def findPose(self, img, draw=True): imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) self.results = self.pose.process(imgRGB) if self.results.pose_landmarks: if draw: self.mpDraw.draw_landmarks(img, self.results.pose_landmarks, self.mpPose.POSE_CONNECTIONS) return img def findPosition(self, img, draw=True): self.lmList = [] if self.results.pose_landmarks: for id, lm in enumerate(self.results.pose_landmarks.landmark): h, w, c = img.shape # print(id, lm) cx, cy = int(lm.x * w), int(lm.y * h) self.lmList.append([id, cx, cy]) if draw: cv2.circle(img, (cx, cy), 5, (255, 0, 0), cv2.FILLED) return self.lmListdef main(): cap = cv2.VideoCapture('Pose_videos/02.mp4') pTime = 0 detector = poseDetector() while True: success, img = cap.read() img = detector.findPose(img) lmList = detector.findPosition(img, draw=False) if len(lmList) != 0: print(lmList[14]) cv2.circle(img, (lmList[14][1], lmList[14][2]), 15, (0, 0, 255), cv2.FILLED) cTime = time.time() fps = 1 / (cTime - pTime) pTime = cTime cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3) cv2.imshow("Image", img) k=cv2.waitKey(1) if k==27: breakif __name__ == "__main__": main()
此模块参照与cvzone中的cvzone.PoseModule模块,大家以后也要学习一下这种制作模块的思想,对大家做项目时是很有帮助的。
Example.py
import cv2import timeimport PoseModule as pmcap = cv2.VideoCapture('Pose_videos/02.mp4')pTime = 0detector = pm.poseDetector()while True: success, img = cap.read() img = detector.findPose(img) lmList = detector.findPosition(img, draw=False) if len(lmList) !=0: print(lmList[14]) cv2.circle(img, (lmList[14][1], lmList[14][2]), 15, (0, 0, 255), cv2.FILLED) cTime = time.time() fps = 1 / (cTime - pTime) pTime = cTime cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3) cv2.imshow("Image", img) k = cv2.waitKey(1) if k == 27: break
可以看到,在以后做项目时就可以从模块当中copy代码,实现会变得更加的方便。
人体姿态图
此为人体姿态各点的对应图,如果你想要检测某一点的信息,则需要查看此图。
(此图来源于Pose | mediapipe)
4、项目资源
GitHub:18 Human Posture Recognition
5、项目总结
本次项目是按照mediapipe提供的人体姿态估计的功能实现的项目,非常的基础和简单,后面如果我有更好的点子会继续更新这部分内容。