一、算法简介:
GBDT 的全称是 Gradient Boosting Decision Tree
,梯度提升树,在传统机器学习算法中,GBDT算的上是TOP前三的算法。
想要理解GBDT的真正意义,那就必须理解GBDT中的Gradient Boosting
和Decision Tree
分别是什么?
1. Decision Tree:CART回归树
首先,GBDT使用的决策树是CART回归树,无论是处理回归问题还是二分类以及多分类,GBDT使用的决策树通通都是都是CART回归树。
为什么不用CART分类树呢?因为GBDT每次迭代要拟合的是梯度值,是连续值所以要用回归树。
对于回归树算法来说最重要的是寻找最佳的划分点,那么回归树中的可划分点包含了所有特征的所有可取的值。
在分类树中最佳划分点的判别标准是熵或者基尼系数,都是用纯度来衡量的,但是在回归树中的样本标签是连续数值,所以再使用熵之类的指标不再合适,取而代之的是平方误差,它能很好的评判拟合程度。
2.回归树生成算法:
输入:训练数据集 D D D
输出:回归树 f ( x ) f(x) f(x)
在训练数据集所在的输入空间中,递归的将每个区域划分为两个子区域并决定每个子区域上的输出值,构建二叉决策树:
1)选择最优切分变量 j j j与切分点 s s s,求解:
min j , s [ min c 1 ∑ x i ∈ R 1 ( j , s ) ( y i − c 1 ) 2 + min c 2 ∑ x i ∈ R 2 ( j , s ) ( y i − c 2 ) 2 \min_{j,s}[\min_{c_1}\sum_{x_i\in R_1(j,s)}(y_i-c_1)^2+\min_{c_2}\sum_{x_i\in R_2(j,s)}(y_i-c_2)^2 j,smin[c1minxi∈R1(j,s)∑(yi−c1)2+c2minxi∈R2(j,s)∑(yi−c2)2
遍历变量 j j j,对固定的切分变量 j j j扫描切分点 s s s,选择使得上式达到最小值的对 ( j , s ) (j,s) (j,s)。
(2)用选定的对 ( j , s ) (j,s) (j,s)划分区域并决定相应的输出值:
R 1 ( j , s ) = x ∣ x ( j ) ≤ s , R 2 ( j , s ) = x ∣ x ( j ) > s R_1(j,s)=x|x^{(j)}\leq s\quad ,R_2(j,s)=x|x^{(j)}>s R1(j,s)=x∣x(j)≤s,R2(j,s)=x∣x(j)>s
c m ^ = 1 N ∑ x i ∈ R m ( j , s ) y i , m = 1 , 2 \hat{c_m}=\frac{1}{N}\sum_{x_i\in R_m(j,s)}y_i\;,\;m=1,2 cm^=N1xi∈Rm(j,s)∑yi,m=1,2
(3)继续对两个子区域调用步骤(1)和(2),直至满足停止条件。
(4)将输入空间划分为 M M M个区域 R 1 , R 2 , ⋯ , R m R_1\;,\;R_2\;,\;\cdots\;,\;R_m R1,R2,⋯,Rm,生成决策树:
f ( x ) = ∑ m = 1 M c m ^ I ( x ∈ R m ) f(x)=\sum_{m=1}^M\hat{c_m}I(x\in R_m) f(x)=m=1∑Mcm^I(x∈Rm)
3. Gradient Boosting:拟合负梯度
梯度提升树(Grandient Boosting)是提升树(Boosting Tree)的一种改进算法,所以在讲梯度提升树之前先来说一下提升树。
我们用上一篇文章的例子来理解:
假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁;我们去你和损失,拟合的数值为6岁,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。最后将每次拟合的岁数加起来便是模型输出的结果。
提升树算法:
(1)初始化 f 0 ( x ) = 0 f_0(x)=0 f0(x)=0
(2)对 m = 1 , 2 , … , M m=1,2,…,M m=1,2,…,M:
1)计算残差 r m i = y i − f m − 1 ( x i ) , i = 1 , 2 , ⋯ , N r_{mi}=y_i-f_{m-1}(x_i)\;,\;i=1,2,\cdots,N rmi=yi−fm−1(xi),i=1,2,⋯,N
2)拟合残差 r m i r_{mi} rmi学习一个回归树,得到 h m ( x ) h_m(x) hm(x)
3)更新 f m ( x ) = f m − 1 ( x ) + h m ( x ) f_m(x)=f_{m-1}(x)+h_m(x) fm(x)=fm−1(x)+hm(x)
(3)得到回归问题提升树
f M ( x ) = ∑ m = 1 M h m ( x ) f_M(x)=\sum_{m=1}^Mh_m(x) fM(x)=m=1∑Mhm(x)
上面伪代码中的残差是什么?
在提升树算法中,假设我们前一轮迭代得到的强学习器是 f t − 1 ( x ) f_{t-1}(x) ft−1(x),损失函数是 L ( y , f t − 1 ( x ) ) L(y,f_{t-1}(x)) L(y,ft−1(x)),我们本轮迭代的目标是找到一个弱学习器 h t ( x ) h_t(x) ht(x),最小化本轮的损失 L ( y , f t ( x ) ) = L ( y , f t − 1 ( x ) + h t ( x ) ) L(y,f_t(x))=L(y,f_{t-1}(x)+h_t(x)) L(y,ft(x))=L(y,ft−1(x)+ht(x))。
当采用平方损失函数时:
L ( y , f t − 1 ( x ) + h t ( x ) ) = ( y − f t − 1 ( x ) − h t ( x ) ) 2 = ( r − h t ( x ) ) 2 L(y,f_{t-1}(x)+h_t(x))=(y-f_{t-1}(x)-h_t(x))^2=(r-h_t(x))^2 L(y,ft−1(x)+ht(x))=(y−ft−1(x)−ht(x))2=(r−ht(x))2
这里: r = y − f t − 1 ( x ) r=y-f_{t-1}(x) r=y−ft−1(x),是当前模型拟合数据的残差(residual)。
所以,对于提升树来说只需要简单地拟合当前模型的残差。
回到我们上面讲的那个通俗易懂的例子中,第一次迭代的残差是10岁,第二次残差4岁…
当损失函数是平方损失和指数损失函数时,梯度提升树每一步优化是很简单的,但是对于一般损失函数而言,往往每一步优化起来不那么容易,针对这一问题,Freidman提出了梯度提升树算法,这是利用最速下降的近似方法,其关键是利用损失函数的负梯度作为提升树算法中的残差的近似值。那么负梯度长什么样呢?第 t t t轮的第 i i i个样本的损失函数的负梯度为:
− [ ∂ L ( y , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f t − 1 ( x ) -[\frac{\partial L(y,f(x_i))}{\partial f(x_i)}]_{f(x)=f_{t-1}(x)} −[∂f(xi)∂L(y,f(xi))]f(x)=ft−1(x)
此时不同的损失函数将会得到不同的负梯度,如果选择平方损失:
L ( y , f ( x i ) ) = 1 2 ( y − f ( x i ) ) 2 L(y,f(x_i))=\frac{1}{2}(y-f(x_i))^2 L(y,f(xi))=21(y−f(xi))2
负梯度为:
− [ ∂ L ( y , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f t − 1 ( x ) = y − f ( x i ) -[\frac{\partial L(y,f(x_i))}{\partial f(x_i)}]_{f(x)=f_{t-1}(x)}=y-f(x_i) −[∂f(xi)∂L(y,f(xi))]f(x)=ft−1(x)=y−f(xi)
此时我们发现GBDT的负梯度就是残差,所以说对于回归问题,我们要拟合的就是残差。
那么对于分类问题呢?二分类和多分类的损失函数都是log loss,本文以回归问题为例进行讲解。
4. GBDT算法原理
上面两节分别将Decision Tree和Gradient Boosting介绍完了,下面将这两部分组合在一起就是我们的GBDT了。
GBDT算法:
(1)初始化弱学习器
f 0 ( x ) = arg min c ∑ i = 1 N L ( y i , c ) f_0(x)=\arg\min_{c}\sum_{i=1}^NL(y_i,c) f0(x)=argcmini=1∑NL(yi,c)
(2)对 m = 1 , 2 , … , M m=1,2,…,M m=1,2,…,M有:
1)对每个样本 i = 1 , 2 , … , N i=1,2,…,N i=1,2,…,N,计算负梯度,即残差:
r i m = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x ) r_{im}=-[\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}]_{f(x)=f_{m-1}(x)} rim=−[∂f(xi)∂L(yi,f(xi))]f(x)=fm−1(x)
2)将上步得到的残差作为样本新的真实值,并将数据 ( x i , r i m ) , , i = 1 , 2 , ⋯ , N (x_i\;,\;r_{im})\;,\;,i=1,2,\cdots,N (xi,rim),,i=1,2,⋯,N作为下棵树的训练数据,得到一颗新的回归树 f m ( x ) f_m(x) fm(x),其对应的叶子节点区域为 R j m , j = 1 , 2 , ⋯ , J R_{jm}\;,\;j=1,2,\cdots,J Rjm,j=1,2,⋯,J。其中 J J J为回归树 t t t的叶子节点的个数。
3)对叶子区域 j = 1 , 2 , . . J j =1,2,..J j=1,2,..J计算最佳拟合值
Υ j m = arg min Υ ∑ x i ∈ R j m L ( y i , f m − 1 ( x i ) + Υ \Upsilon_{jm}=\arg\min_{\Upsilon}\sum_{x_i\in R_{jm}}L(y_i,f_{m-1}(x_i)+\Upsilon Υjm=argΥminxi∈Rjm∑L(yi,fm−1(xi)+Υ
4)更新强学习器:
f m ( x ) = f m − 1 ( x ) + ∑ j = 1 J Υ j m I ( x ∈ R j m ) f_m(x)=f_{m-1}(x)+\sum_{j=1}^J\Upsilon_{jm}I(x\in R_{jm}) fm(x)=fm−1(x)+j=1∑JΥjmI(x∈Rjm)
(3)得到最终学习器
f ( x ) = f M ( x ) = f 0 ( x ) + ∑ m = 1 M ∑ j = 1 J Υ j m I ( x ∈ R j m ) f(x)=f_{M}(x)=f_0(x)+\sum_{m=1}^M\sum_{j=1}^J\Upsilon_{jm}I(x\in R_{jm}) f(x)=fM(x)=f0(x)+m=1∑Mj=1∑JΥjmI(x∈Rjm)
二、实例详解
数据介绍:
如下表所示:一组数据,特征为年龄、体重,身高为标签值。共有5条数据,前四条为训练样本,最后一条为要预测的样本。
编号 | 年龄(岁) | 体重(kg) | 身高(cm)(标签值) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 20 | 1.1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | 7 | 30 | 1.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 21 | 70 | 1.7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 30 | 60 | 1.8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4(预测) | 25 | 65 | ” />f0(x)=argcmini=1∑NL(yi,c) 损失函数为平方损失,因为平方损失函数是一个凸函数,直接求导,倒数等于零,得到 c c c。 ∑ i = 1 N ∂ L ( y i , c ) ∂ c = ∑ i = 1 N ∂ ( 1 2 ( y i − c ) 2 ) ∂ c = ∑ i = 1 N ( c − y i ) \sum_{i=1}^N\frac{\partial L(y_i,c)}{\partial c}=\sum_{i=1}^N\frac{\partial (\frac{1}{2}(y_i-c)^2)}{\partial c}=\sum_{i=1}^N(c-y_i) i=1∑N∂c∂L(yi,c)=i=1∑N∂c∂(21(yi−c)2)=i=1∑N(c−yi) 令导数等于0: ∑ i = 1 N ( c − y i ) = 0 ⇒ c = ∑ i = 1 N y i / N \sum_{i=1}^N(c-y_i)=0\Rightarrow c=\sum_{i=1}^Ny_i/N i=1∑N(c−yi)=0⇒c=i=1∑Nyi/N 所以初始化时,c取值为所有训练样本标签值的均值: c = ( 1.1 + 1.3 + 1.7 + 1.8 ) / 4 = 1.475 c=(1.1+1.3+1.7+1.8)/4=1.475 c=(1.1+1.3+1.7+1.8)/4=1.475 此时得到初始学习器: f 0 ( x ) = c = 1.475 f_0(x)=c=1.475 f0(x)=c=1.475 2.对迭代轮数m=1,2,…,M 由于我们设置了迭代次数:n_trees=5,这里的M=5。 计算负梯度,根据上文损失函数为平方损失时,负梯度就是残差残差,再直白一点就是y与上一轮得到的学习器 f m − 1 ( x ) f_{m-1}(x) fm−1(x)的差值: r i 1 = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f 0 ( x ) r_{i1}=-[\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}]_{f(x)=f_0(x)} ri1=−[∂f(xi)∂L(yi,f(xi))]f(x)=f0(x) 残差在下表列出:
此时将残差作为样本的真实值来训练弱学习器 f 1 ( x ) f_1(x) f1(x),即下表数据:
接着,寻找回归树的最佳划分节点,遍历每个特征的每个可能取值。从年龄特征的5开始,到体重特征的70结束,分别计算分裂后两组数据的平方损失,左节点平方损失为 S E l SE_{l} SEl,右节点平方损失为 S E r SE_{r} SEr。 找到使平方损失和 S E s u m = S E l + S E r SE_{sum}=SE_{l}+SE_{r} SEsum=SEl+SEr最小的那个划分节点,即为最佳划分节点。 例如:以年龄7为划分节点,将小于7的样本划分为到左节点,大于等于7的样本划分为右节点。 左节点包括 x 0 x_0 x0,右节点包括样本 x 1 , x 2 , x 3 x_1\;,\;x_2\;,\;x_3 x1,x2,x3。 S E l = 0 , S E r = 0.14 , S E s u m = S E l + S E r = 0.14 SE_{l}=0,SE_{r}=0.14,SE_{sum}=SE_{l}+SE_{r}=0.14 SEl=0,SEr=0.14,SEsum=SEl+SEr=0.14 我们所有可能划分情况如下表所示:
以上划分点是的总平方损失最小为0.025有两个划分点:年龄21和体重60,所以随机选一个作为划分点: 我们生成第一棵树为: 根据上图,我们的划分依据为: 选择的划分标准为体重,小于45kg的分为一类,为样本0和1;大于等于45kg的分为一类,为样本2和3。 第一次分开后再以年龄作为选择方式,左支中以6岁为分界线,将样本0和1分开;右支以25.5岁为分界线,将样本2和3分开。 计算残差,并把残差当做目标值训练第一棵树这里其实和上面初始化学习器是一个道理,平方损失求导,令导数等于零,化简之后得到每个叶子节点的参数 y y y,其实就是标签值的均值。这个地方的标签值不是原始的 y y y,而是本轮要拟合的标残差 y − f 0 ( x ) y-f_0(x) y−f0(x)。 此时,第一棵树如下所示: 此时可更新强学习器,需要用到参数学习率: f 1 ( x ) = f 0 ( x ) + l ∗ ∑ j = 1 4 Υ j 1 I ( x ∈ R j 1 ) f_1(x)=f_0(x)+l*\sum_{j=1}^4\Upsilon_{j1}I(x\in \R_{j1}) f1(x)=f0(x)+l∗j=1∑4Υj1I(x∈Rj1) 为什么要用学习率呢?这是
我们看一下第二棵树:
第五棵树为: 得到最后的强学习器: 三、预测样本4样本4为25岁,65kg。 f 0 ( x ) = 1.475 f_0(x)=1.475 f0(x)=1.475 在 f 1 ( x ) f_1(x) f1(x)中,体重65kg大于45kg(90斤),所以分到右节点;又因为年龄为25岁小于25.5,所以最终的预测值为0.225; 在 f 2 ( x ) f_2(x) f2(x)中,最终预测为0.2025; 在 f 3 ( x ) f_3(x) f3(x)中,最终预测为0.1822; 在 f 4 ( x ) f_4(x) f4(x)中,最终预测为0.164; 在 f 5 ( x ) f_5(x) f5(x)中,最终预测为0.1476; 最终预测结果: 四、调用GBDT算法包我们使用sklearn中的GBDT算法包来实现,生成的树为:
五、源代码
© 版权声明 文章版权归作者所有,未经允许请勿转载。 THE END 喜欢就支持一下吧 相关推荐 |