今天我们使用 Pyecharts 制作一个地球可视化项目,一起来看看吧
Let’s go!
数据处理
这里我们使用全球新冠感染人数的数据集作为我们的测试数据,先来看看数据的整体情况
import pandas as pddf = pd.read_csv("owid-covid-data.csv")df_0608 = df[df['date'] == '2022-06-08']df_new = df_0608[pd.isna(df_0608['continent']) == False]df_new
Output:
我们选取0608这一天的数据,可以看到 total_cases 字段就是国家当前的累计总确诊人数
下面就提取国家和确诊人数
covid_data = df_new[['location', 'total_cases']].values.tolist()
Output:
Pyecharts 绘图
通过 Pyecharts 绘制地球图,在官网上有很详细的例子,我们直接套用即可
首先导入相关库
import pyecharts.options as optsfrom pyecharts.charts import MapGlobe
定义地球图函数并绘制
data = [x for _, x in covid_data]low, high = min(data), max(data)c = (MapGlobe().add_schema().add(maptype="world",series_name="World Covid Data",data_pair=covid_data,is_map_symbol_show=False,label_opts=opts.LabelOpts(is_show=False),).set_global_opts(visualmap_opts=opts.VisualMapOpts(min_=low,max_=high,range_text=["max", "min"],is_calculable=True,range_color=["lightskyblue", "yellow", "orangered"],)))c.render_notebook()
这样我们得到如下全球各国新冠确诊人数分布图
部署为 Web 服务
当前我们所有的代码都是运行在 Jupyter 当中的,如果要分享给其他人,并不是十分的方便,我们可以将整体代码部署成一个 Web 服务,这样其他人就可以方便的通过浏览器来查看该地球图了
我们先创建项目目录,命名为 flask_map,再将本地安装的 Pyecharts 目录下的 templates 文件夹拷贝到该目录下,同时再创建 data 文件夹和 main.py 文件,Pyecharts 模板位置如下:
pyecharts.render.templates
我们将数据集 owid-covid-data.csv 放到 data 文件夹下,再编写 main.py 文件
# coding = utf-8"""======================@author:luobo@time:2022/7/2:14:32@email:@File: main.py======================"""from flask import Flask, render_templatefrom jinja2 import Markup, Environment, FileSystemLoaderfrom pyecharts.globals import CurrentConfig# 关于 CurrentConfig,可参考 [基本使用-全局变量]CurrentConfig.GLOBAL_ENV = Environment(loader=FileSystemLoader("./templates"))from pyecharts import options as optsfrom pyecharts.charts import MapGlobeimport pandas as pddf = pd.read_csv("data/owid-covid-data.csv")df_0608 = df[df['date'] == '2022-06-08']df_new = df_0608[pd.isna(df_0608['continent']) == False]covid_data = df_new[['location', 'total_cases']].values.tolist()app = Flask(__name__, static_folder="templates")def Map_base():data = [x for _, x in covid_data]low, high = min(data), max(data)c = (MapGlobe().add_schema().add(maptype="world",series_name="World Covid Data",data_pair=covid_data,is_map_symbol_show=False,label_opts=opts.LabelOpts(is_show=False),).set_global_opts(visualmap_opts=opts.VisualMapOpts(min_=low,max_=high,range_text=["max", "min"],is_calculable=True,range_color=["lightskyblue", "yellow", "orangered"],)))return c@app.route("/")def index():c = Map_base()c.render('templates/Map.html')return render_template("Map.html")if __name__ == "__main__":app.run()
这样,当我们启动 Flask 服务器之后,只需要访问根目录(/),就会在 templates 目录下生成 Map.html 文件,也会在浏览器正常展示地球图了
至于如何将本地 Web 应用部署到公网上,我们在后面的文章中再介绍吧!
我推荐一个【Python自动化测试交流群:746506216】,大家可以一起探讨交流软件测试,共同学习软件测试技术、面试等软件测试方方面面,助你快速进阶Python自动化测试/测试开发,走向高薪之路。
喜欢软件测试的小伙伴们,如果我的博客对你有帮助、如果你喜欢我的博客内容,请 “点赞” “评论” “收藏” 一 键三连哦!