占有统治地位的Transformer究竟是什么

讲个有趣的小故事

我高二那年从乙班考入了甲班,对于那时的我 偏科英语最高只有108+班级平均英语成绩125+暴躁难为人女英语老师,使我上英语课时战战兢兢。英语老师很时尚,喜欢搞花里胡哨的词语让我们放松,也很尊重我虽然暴躁但维护着我的面子不让我出丑。

当时正逢《变形金刚》电影上映,我在电影院的海报里刚好看到了Transformer这个单词。周几的一天英语课,老师提问完我Transform这个词后问我知不知道Transformer什么意思,于其中带着平淡,似乎这是一个很平常的词,我应该会。班里鸦雀无声,知道老师开始”难为我这个新生(开玩笑)”了。

于是我扑通着心跳,以沉默的语气说出了”变形金刚”,似乎就是一个很平常的词。那时我不但余光瞥见了老师的惊讶眼神,耳边还想起了同学们的”哇~”。

这也是为什么我选用这个封面。那是老师唯一一次考验我,她似乎看到了我的努力,我也没有辜负她的期待。

回归正题

本文分成两个部分前半部分我会以白话文(个人理解)的方式尽可能通俗易懂地将transformer介绍清楚,你只需要有一点CNN、RNN和一点文本处理的基础即可;后半部分我会以以前写AI遮天传的方式再把整体架构过一遍。学完这些再去做“transformer 实现看图说话”项目就显得很轻松啦。

文章内容较多,建议收藏。

一、Transformer是什么

我们以前学习过CNN、RNN以及它们的变种,像是VGG、Resnet、LSTM、GRU等等,都是神经网络模型,主要的工作就是在深度学习领域的“特征工程”中进行特征提取。

我们以CNN为例回忆之前所学简单CNN模型的特点:卷积、池化、全连接,这些操作都是为了能够更好地将图片的特征提取出来:不同卷积层代表着不同感受野下提取不同的特征,同一层不同feature map又代表着该层不同方面的特征;哪怕是加上激活函数也是为了使得结果不断地向非线性(使直线弯折更加灵活)转化。通过反向计算不断地更新卷积核、全连接层等的参数,对比提高accuracy降低loss,得到最优秀的权重,来完成特征提取(重要的特征权重大)。

图片[1] - 占有统治地位的Transformer究竟是什么 - MaxSSL

RNN同样有着自己的工作方式。在Transformer创作之初,它用来解决机器翻译(自然语言处理)方向“RNN无法并行计算”、“即使使用了GRU或者LSTM,RNN仍然需要注意力机制提供对于任意状态的访问”等问题,来自于论文“Attention is all you need”,于2017年在自然语言处理方向大火,2020年应用在计算机视觉方向后效果卓越,后续的bert、detr乃至如今爆火的chatGPT模型,都是基于Transformer来实现的。

图片[2] - 占有统治地位的Transformer究竟是什么 - MaxSSL

所以,简单来说,transformer是一种近些年来非常优秀的网络模型、特征提取器(CV)、序列到序列(NLP)的转换器。

二、传统方法的问题

前面所说,它创作之初用来解决机器翻译(自然语言处理)中,RNN无法并行计算等问题。其基本组成依旧是传统机器翻译模型中常见的seq2seq网络,即序列到序列,所以会有编码器解码器两个框架。

补充:许多NLP任务可以表述为序列序列,再简单来说就是向量到向量:

  • 机器翻译 (法语 → 英语)

  • 总结 (长文本 → 短文本)

  • 对话 (先前的话语 → 接下来的话语)

  • 代码生成 (自然语言 → Python 代码)

  • 旋律产生 (一个乐句 → 下一个乐句)

  • 语音识别 (声音 → 文本)

回顾传统RNN,将其展开,它的下一个输入需要上一时刻的输出:

图片[3] - 占有统治地位的Transformer究竟是什么 - MaxSSL

而transformer通过矩阵运算的形式完成了并行计算,这个后面会讲到。

此外,传统的word2vec也存在如“无法区分不同语境中同一个词的表达”,“训练好的向量就永久不变”这样的问题

图片[4] - 占有统治地位的Transformer究竟是什么 - MaxSSL

而transformer通过前后文“注意力机制”来完成区分不同语境中同一个词的表达,(有一点点像n-gram,但本质不同,n-gram是滑动窗口部分,RNN变种是用门控开关来一个个设置词的权重,在我看来注意力机制是整体地观察上下文然后提取主干部分。后面会讲到。)

三、Attention、self-attention、multi-headed attention

即注意力、自注意力、多头注意力。

3.1 这里的注意力指的是什么

比如这里这句话:“小明今天开心地踢了一个绿色的皮球”,这句话的关键词/重要的部分是 “小明踢球“,其他的次要,次次要。我们把注意力放在这些重要的上面,即分配一些权重。

这是在语言中,图片中也是一样的,比如猫狗识别,我记得猫有胡须而狗没有,可以把注意力放在胡须上。又或者说图片有前景和背景,我们应该把注意力放在更重要的前景里。

这样,我们人类下意识地提取出了”小明踢球” 和 猫狗识别时忽略背景、区分猫狗特征来完成识别,就叫做注意力。当然本质上还是权重的不同,不过本次引入了一种新的做法:自注意力

3.2 self-attention是什么

顾名思义自注意力,自己注意自己这句话,以下面这句话为例:

  • The animal didn’t cross the street because it was too tired.

  • The animal didn’t cross the street because it was too narrow.

首先看第一句话,这个动物没有穿过街道因为它太累了。因此在进行动物这个词的计算的时候,动物没穿过街道因为累作为句子主体部分要被分予的注意力(权重)更大些。更精简一些则是动物累了,显然计算animal时animal和tired更加”引人注意”。

同理,动物没有穿过街道因为它太窄了,这里说的是街道窄,因此计算animal时更注意animal、street、narrow,计算street时更注意street、narrow。

图片[5] - 占有统治地位的Transformer究竟是什么 - MaxSSL

我们观察上面这张图,我们不提计算动物、街道、累这几个词的时候,但看it这个词,在动物没有穿过街道因为它太累了这句话里it指的是动物,因此训练的效果应该是 The animal 对于it的注意力更大,颜色更深。

这里谁对于谁关乎到后面所学Q、K、V中Q*K这步操作,后面会介绍到。

一般到第五层的时候,单词就开始有根据地关注其他词。

图片[6] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[7] - 占有统治地位的Transformer究竟是什么 - MaxSSL

3.3 self-attention如何计算

计算来了!不过放心这里先不写公式,依旧是白话文!

图片[8] - 占有统治地位的Transformer究竟是什么 - MaxSSL

上图 以输入一句话(这里两个词)为例,Thinking和Machine,经过embedding后得到两个低维词向量X1, X2,接下来就要开始了:

此时出现 图片[9] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[9] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[10] - 占有统治地位的Transformer究竟是什么 - MaxSSL三个矩阵,我们先不管它是怎么来的(当然有W了那就证明是权重矩阵,既然是权重那就一开始初始化然后训练更新。) X1,X2分别与图片[10] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[11] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[11] - 占有统治地位的Transformer究竟是什么 - MaxSSL三个矩阵相乘,得到各自的q1、k1、v1和q2、k2、v2向量。当然放在一起就是矩阵乘以矩阵等于矩阵了。

图片[12] - 占有统治地位的Transformer究竟是什么 - MaxSSL

其中

  • Q:query,要去查询的

  • K:key,要被查询的

  • V:value,这个词的含义即实际特征

Q和K一起看,然后谈V

接下来,矩阵Q与矩阵K点乘,分开来看就是向量q1分别乘以k1,k2,k3… 向量q2分别乘以k1,k2,k3… ,放在一起不就是矩阵相乘吗。

至于Q*K的含义,可以这样理解,下图左侧各词分别是q1、q2…,右边是k1、k2…

不过就是单词->embedding->乘以一个图片[13] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[13] - 占有统治地位的Transformer究竟是什么 - MaxSSL 矩阵,一个放在左边一个放在右边,每个单词相互之间进行计算嘛。

图片[5] - 占有统治地位的Transformer究竟是什么 - MaxSSL

以上方Thinking和Machine为例的话,计算Thinking就是q1·k1, q1·k2

图片[15] - 占有统治地位的Transformer究竟是什么 - MaxSSL

如果这里q1和k1有关系的话那两个向量就接近于平行内积大,无关则是垂直向量点乘为0.

计算完之后,接下来要经过一次softmax计算再与矩阵V相乘。因为V是该词的特征含义,至少要把各自的v放进去才有实际含义。

即softmax(图片[16] - 占有统治地位的Transformer究竟是什么 - MaxSSL/根号下维度 ) · 图片[16] - 占有统治地位的Transformer究竟是什么 - MaxSSL 得到结果

图片[17] - 占有统治地位的Transformer究竟是什么 - MaxSSL

上面Q·K完成了各词之间的”评分“,用softmax归一化一下,得到的都是0.几的影响度(放在以前就是概率了),乘以V,得到结果Z。

至于除以根号下维度则是因为随着矩阵维度增加结果也会变大。这步叫Scaled Dot-Product Attention

图片[18] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[19] - 占有统治地位的Transformer究竟是什么 - MaxSSL

这样同一词上下文不同注意力也会不同,表达的意思也会不同。

同时矩阵的运算也是并行的,不同词之间直接计算,无论是X·W还是Q·K又或是后面的计算。

3.4 multi-headed机制

多头注意力,也有叫多重注意力,即很多组不同的注意力。

我们上面最开始说到X和图片[9] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[9] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[21] - 占有统治地位的Transformer究竟是什么 - MaxSSL相乘得到Q、K、V矩阵,实际上这个图片[21] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[11] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[11] - 占有统治地位的Transformer究竟是什么 - MaxSSL可以有多组,得到多组不同的Q、K、V矩阵,以得到很组不同的结果,这便是多头注意力机制。就像特征图一样。

图片[23] - 占有统治地位的Transformer究竟是什么 - MaxSSL

我们得到了不同的结果Z0 Z1 Z2 Z3… 一般有8个

图片[24] - 占有统治地位的Transformer究竟是什么 - MaxSSL

将它们拼接在一起concat,进行一次全连接来降维得到最后的输出结果Z

图片[25] - 占有统治地位的Transformer究竟是什么 - MaxSSL

不同的头结果往往是不同的:

图片[26] - 占有统治地位的Transformer究竟是什么 - MaxSSL

3.5 局部模型观察1

下面便是Transformer模型的结构,左侧是编码器encoder解码器decoder

图片[27] - 占有统治地位的Transformer究竟是什么 - MaxSSL

此时我们已经了解了muti-head attention

图片[28] - 占有统治地位的Transformer究竟是什么 - MaxSSL

多组Q、K、V输入,softmax(图片[16] - 占有统治地位的Transformer究竟是什么 - MaxSSL/根号下维度 ) · 图片[16] - 占有统治地位的Transformer究竟是什么 - MaxSSL 得到多个结果,拼在一起(Concat)进行一次全连接(Linear)降维

其中Scaled Dot-Product Attention是softmax那里进行的操作,字母h表示头的数量。

3.6 堆叠多层

一层不够用,那就加!

图片[30] - 占有统治地位的Transformer究竟是什么 - MaxSSL

上图是向量输入 输出向量形式画的,我们依旧按矩阵来想,那就还和前面一样,多头注意力(上图是单个)我们得到多个z拼在一起全连接降维得到Z,接下来要经过Feed Forward Neural Network,得到矩阵R,这里的R就像一开始的X一样,当作输入去输入下一层的muti-head层里和图片[9] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[9] - 占有统治地位的Transformer究竟是什么 - MaxSSL 去运算。计算方法都是相同的。

即刚刚那样的事要再经历一次!

图片[32] - 占有统治地位的Transformer究竟是什么 - MaxSSL

3.7 位置信息表达

在self-attention中每个词都会考虑整个序列的加权,所以其出现位置(先后顺序)并不会对结果产生什么影响,但是这跟实际就有些不符合了,我们希望模型能对位置有额外的认识。

此时,就有了位置编码 Positional Embedding

图片[33] - 占有统治地位的Transformer究竟是什么 - MaxSSL

embedding后得到的X与位置矩阵T相加得到新的Positional Embedding的X。当然实际操作比这麻烦点,加入如正弦余弦函数这样的时钟周期函数,详情自行查阅。

3.8 Add与Normalize

层归一化和残差连接

层归一化

图片[34] - 占有统治地位的Transformer究竟是什么 - MaxSSL

之前我们为例让数据、训练”可控”、别太跑偏,使用的是Batch Normalize,而这里使用的是Layer Normalize,区别如上图,即前者对于每个Batch,后者是对于每个数据。

残差连接

图片[35] - 占有统治地位的Transformer究竟是什么 - MaxSSL

这是个老知识了,即这样不会使得训练效果变差,因为每次都加上了之前的x。

3.9 局部模型观察-Encoder

至此Encoder所需要的就都介绍完啦

图片[36] - 占有统治地位的Transformer究竟是什么 - MaxSSL

两个子层

  • 多头注意力层

  • 2层的前馈网络

两个小技巧

  • 残差链接

  • 层归一化:将输入归一化为均值为0,方差为1

完整的编码器

  • 每一层单元使用前一层的输出作为Q, K, V的输入

  • 根据实验结果,组成单元的层数被设定为6

3.10 Decoder中的Masked Muti-Head Attention

与Encoder不同,Decoder中加入了Mask机制,不过Decoder也是输入一个序列输出一个序列。

图片[37] - 占有统治地位的Transformer究竟是什么 - MaxSSL

前面介绍了Encoder中矩阵运算,而Decoder中的答案则是一个接着一个出的,以机器翻译为例,翻译出I am a student,除了要看前一种语言的序列以外,翻译到am时要考虑I,翻译到a的时候要考虑 I am…

因此,在不断地输入的时候,并不能像Encoder一样X直接放进去,而是需要加入Mask机制,即翻译到a的时候要考虑 I am,而student此时还没有翻译出来,要用掩码给它掩盖掉。这样Embedding、Embedding with time signal时都看不到,输入进去的时候也”不知道“了。

图片[38] - 占有统治地位的Transformer究竟是什么 - MaxSSL

Masked Muti-Head Attention它最终只输出一个Q,与Encoder中的K, V放在一起作为输入传递给Decoder中的Muti-Head Attention进行预测,得到最终最终的结果

图片[39] - 占有统治地位的Transformer究竟是什么 - MaxSSL

损失函数使用cross-entropy即可

3.11 整体网络架构梳理和其它技巧

  • 架构:编码器-解码器

  • 输入:字节对编码 + 位置编码

  • 模型:多层编码/解码模型单元的堆叠

  • 输出:下个单词的概率

  • 损失函数:在softmax层之后使用标准的交叉熵损失函数

架构:编码器-解码器

图片[40] - 占有统治地位的Transformer究竟是什么 - MaxSSL

输入:输入=字节对编码 + 位置编码

图片[41] - 占有统治地位的Transformer究竟是什么 - MaxSSL

模型:多层编码/解码模型单元的堆叠

图片[42] - 占有统治地位的Transformer究竟是什么 - MaxSSL

其中,Masked Muti-Head Attention它最终只输出一个Q,与Encoder中的K, V放在一起作为输入传递给Decoder中的Muti-Head Attention进行预测。

输出:下个单词的概率

损失函数:在softmax层之后使用标准的交叉熵损失函数

图片[43] - 占有统治地位的Transformer究竟是什么 - MaxSSL

其他技巧

  • 检查点平均

  • ADAM优化器

  • 在训练时,加上每一层的残差前使用dropout

  • 标签平滑

  • 带有束搜索和长度惩罚的自回归解码

3.12 补充:字节编码和位置编码

Input = BPE + PE 字节对编码+位置编码

字节对编码(Byte Pair Encoding, BPE)

不是对词进行编码,而是将词分割成更小的单元进行编码。

  • 一种单词分割算法

  • 从所有字母组成的单词表开始

  • 将频率最高的n-gram变成新的词表单词

图片[44] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[45] - 占有统治地位的Transformer究竟是什么 - MaxSSL

字节对编码 (Byte Pair Encoding, BPE)

  • 将出现次数少和未见过的单词编码成子词单元 (subword units) 的序列,解决未登录词 (out of vocabulary, OOV) 的问题

  • 在上面的例子中,未登录词 “best” 将会被切割成 “b est”。这样便将之前未见过的单词转化为相应的子词单元

位置编码 (Positional encoding, PE)

设字节对编码维度为d,接下来在字节编码中加入位置编码

  • Transformer的组成单元对于在不同位置的的相同单词不敏感

  • 加入位置编码后,在不同位置的相同单词会有不同表示

图片[46] - 占有统治地位的Transformer究竟是什么 - MaxSSL 图片[47] - 占有统治地位的Transformer究竟是什么 - MaxSSL

  • 是embedding的索引, 取值范围是 0 到 d/2

  • Input = BPE + PE

位置编码可视化

图片[48] - 占有统治地位的Transformer究竟是什么 - MaxSSL

上图可见每一行相当于一个position即第几个位置,每一列相当于embedding的维度。这是偶数位和奇数位的位置编码。

一个位置编码的例子,上图包含了20个单词(每一行)和512维向量长度(每一列)。可以发现图中PE的。

图片[49] - 占有统治地位的Transformer究竟是什么 - MaxSSL

取值好像从中间分开了。这是因为这个图中的左边的值是由sin函数生成的,右边的值是由cos生成 的,这两个函数生成的值之后被拼接起来形成了最终的位置编码。

四、总结

机器翻译结果:

图片[50] - 占有统治地位的Transformer究竟是什么 - MaxSSL

Transformer是一个高效的模型,在NLP的很多任务中非常有效

证明了注意力机制的有效性

为最新NLP的前沿进展 (如BERT和XLNet) 提供了启示

然而,Transformer框架不容易优化,对于参数修改比较敏感

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享