文章内容整理自 博学谷狂野架构师

概述

什么是函数式接口?简单来说就是只有一个抽象函数的接口。为了使得函数式接口的定义更加规范,java8 提供了@FunctionalInterface 注解告诉编译器在编译器去检查函数式接口的合法性,以便在编译器在编译出错时给出提示。为了更加规范定义函数接口,给出如下函数式接口定义规则:

  • 有且仅有一个抽象函数
  • 必须要有@FunctionalInterface 注解
  • 可以有默认方法

可以看出函数式接口的编写定义非常简单,不知道大家有没有注意到,其实我们经常会用到函数式接口,如Runnable 接口,它就是一个函数式接口:

COPY@FunctionalInterfacepublic interface Runnable {    /**     * When an object implementing interface Runnable is used     * to create a thread, starting the thread causes the object's     * run method to be called in that separately executing     * thread.     * 

* The general contract of the method run is that it may * take any action whatsoever. * * @see java.lang.Thread#run() */ public abstract void run();}

过去我们会使用匿名内部类来实现线程的执行体:

COPYnew Thread(new Runnable() {            @Override            public void run() {                System.out.println("Hello FunctionalInterface");            }        }).start();

现在我们使用Lambda 表达式,这里函数式接口的使用没有体现函数式编程思想,这里输出字符到标准输出流中,产生了副作用,起到了简化代码的作用,当然还有装B。

COPYnew Thread(()->{           System.out.println("Hello FunctionalInterface");       }).start();

Java8 util.function 包下自带了43个函数式接口,大体分为以下几类:

  • Consumer 消费接口
  • Function 功能接口
  • Operator 操作接口
  • Predicate 断言接口
  • Supplier 生产接口

其他接口都是在此基础上变形定制化罢了。

函数式接口详细介绍

这里只介绍最基础的函数式接口,至于它的变体只要明白了基础自然就能够明白

Consumer

消费者接口,就是用来消费数据的。

COPY@FunctionalInterfacepublic interface Consumer {    /**     * Performs this operation on the given argument.     *     * @param t the input argument     */    void accept(T t);    /**     * Returns a composed {@code Consumer} that performs, in sequence, this     * operation followed by the {@code after} operation. If performing either     * operation throws an exception, it is relayed to the caller of the     * composed operation.  If performing this operation throws an exception,     * the {@code after} operation will not be performed.     *     * @param after the operation to perform after this operation     * @return a composed {@code Consumer} that performs in sequence this     * operation followed by the {@code after} operation     * @throws NullPointerException if {@code after} is null     */    default Consumer andThen(Consumer after) {        Objects.requireNonNull(after);        return (T t) -> { accept(t); after.accept(t); };    }}

Consumer 接口中有accept 抽象方法,accept接受一个变量,也就是说你在使用这个函数式接口的时候,给你提供了数据,你只要接收使用就可以了;andThen 是一个默认方法,接受一个Consumer 类型,当你对一个数据使用一次还不够爽的时候,你还能再使用一次,当然你其实可以爽无数次,只要一直使用andThan方法。

Function

何为Function呢?比如电视机,给你带来精神上的愉悦,但是它需要用电啊,电视它把电转换成了你荷尔蒙,这就是Function,简单电说,Function 提供一种转换功能。

COPY@FunctionalInterfacepublic interface Function {    /**     * Applies this function to the given argument.     *     * @param t the function argument     * @return the function result     */    R apply(T t);    /**     * Returns a composed function that first applies the {@code before}     * function to its input, and then applies this function to the result.     * If evaluation of either function throws an exception, it is relayed to     * the caller of the composed function.     *     * @param  the type of input to the {@code before} function, and to the     *           composed function     * @param before the function to apply before this function is applied     * @return a composed function that first applies the {@code before}     * function and then applies this function     * @throws NullPointerException if before is null     *     * @see #andThen(Function)     */    default  Function compose(Function before) {        Objects.requireNonNull(before);        return (V v) -> apply(before.apply(v));    }    /**     * Returns a composed function that first applies this function to     * its input, and then applies the {@code after} function to the result.     * If evaluation of either function throws an exception, it is relayed to     * the caller of the composed function.     *     * @param  the type of output of the {@code after} function, and of the     *           composed function     * @param after the function to apply after this function is applied     * @return a composed function that first applies this function and then     * applies the {@code after} function     * @throws NullPointerException if after is null     *     * @see #compose(Function)     */    default  Function andThen(Function after) {        Objects.requireNonNull(after);        return (T t) -> after.apply(apply(t));    }    /**     * Returns a function that always returns its input argument.     *     * @param  the type of the input and output objects to the function     * @return a function that always returns its input argument     */    static  Function identity() {        return t -> t;    }}

Function 接口 最主要的就是apply 函数,apply 接受T类型数据并返回R类型数据,就是将T类型的数据转换成R类型的数据,它还提供了compose、andThen、identity 三个默认方法,compose 接受一个Function,andThen也同样接受一个Function,这里的andThen 与Consumer 的andThen 类似,在apply之后在apply一遍,compose 则与之相反,在apply之前先apply(这两个apply具体处理内容一般是不同的),identity 起到了类似海关的作用,外国人想要运货进来,总得交点税吧,然后货物才能安全进入中国市场,当然了想不想收税还是你说了算的。

Operator

可以简单理解成算术中的各种运算操作,当然不仅仅是运算这么简单,因为它只定义了运算这个定义,但至于运算成什么样你说了算。由于没有最基础的Operator,这里将通过 BinaryOperator、IntBinaryOperator来理解Operator 函数式接口,先从简单的IntBinaryOperator开始。

IntBinaryOperator

从名字可以知道,这是一个二元操作,并且是Int 类型的二元操作,那么这个接口可以做什么呢,除了加减乘除,还可以可以实现平方(两个相同int 数操作起来不就是平方吗),还是先看看它的定义吧:

@FunctionalInterfacepublic interface IntBinaryOperator {    /**     * Applies this operator to the given operands.     *     * @param left the first operand     * @param right the second operand     * @return the operator result     */    int applyAsInt(int left, int right);}

IntBinaryOperator 接口内只有一个applyAsInt 方法,其接收两个int 类型的参数,并返回一个int 类型的结果,其实这个跟Function 接口的apply 有点像,但是这里限定了,只能是int类型。

BinaryOperator

BinaryOperator 二元操作,看起来它和IntBinaryOperator 是父子关系,实际上这两者没有半点关系,但他们在功能上还是有相似之处的:

COPY@FunctionalInterfacepublic interface BinaryOperator extends BiFunction {    /**     * Returns a {@link BinaryOperator} which returns the lesser of two elements     * according to the specified {@code Comparator}.     *     * @param  the type of the input arguments of the comparator     * @param comparator a {@code Comparator} for comparing the two values     * @return a {@code BinaryOperator} which returns the lesser of its operands,     *         according to the supplied {@code Comparator}     * @throws NullPointerException if the argument is null     */    public static  BinaryOperator minBy(Comparator comparator) {        Objects.requireNonNull(comparator);        return (a, b) -> comparator.compare(a, b) <= 0 ? a : b;    }    /**     * Returns a {@link BinaryOperator} which returns the greater of two elements     * according to the specified {@code Comparator}.     *     * @param  the type of the input arguments of the comparator     * @param comparator a {@code Comparator} for comparing the two values     * @return a {@code BinaryOperator} which returns the greater of its operands,     *         according to the supplied {@code Comparator}     * @throws NullPointerException if the argument is null     */    public static  BinaryOperator maxBy(Comparator comparator) {        Objects.requireNonNull(comparator);        return (a, b) -> comparator.compare(a, b) >= 0 ? a : b;    }}

BinaryOperator 是 BiFunction 生的,而IntBinaryOperator 是从石头里蹦出来的,BinaryOperator 自身定义了minBy、maxBy默认方法,并且参数都是Comparator,就是根据传入的比较器的比较规则找出最小最大的数据。

Predicate

断言、判断,对输入的数据根据某种标准进行评判,最终返回boolean值:

COPY@FunctionalInterfacepublic interface Predicate {    /**     * Evaluates this predicate on the given argument.     *     * @param t the input argument     * @return {@code true} if the input argument matches the predicate,     * otherwise {@code false}     */    boolean test(T t);    /**     * Returns a composed predicate that represents a short-circuiting logical     * AND of this predicate and another.  When evaluating the composed     * predicate, if this predicate is {@code false}, then the {@code other}     * predicate is not evaluated.     *     * 

Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ANDed with this * predicate * @return a composed predicate that represents the short-circuiting logical * AND of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate and(Predicate other) { Objects.requireNonNull(other); return (t) -> test(t) && other.test(t); } /** * Returns a predicate that represents the logical negation of this * predicate. * * @return a predicate that represents the logical negation of this * predicate */ default Predicate negate() { return (t) -> !test(t); } /** * Returns a composed predicate that represents a short-circuiting logical * OR of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code true}, then the {@code other} * predicate is not evaluated. * *

Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ORed with this * predicate * @return a composed predicate that represents the short-circuiting logical * OR of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate or(Predicate other) { Objects.requireNonNull(other); return (t) -> test(t) || other.test(t); } /** * Returns a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)}. * * @param the type of arguments to the predicate * @param targetRef the object reference with which to compare for equality, * which may be {@code null} * @return a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)} */ static Predicate isEqual(Object targetRef) { return (null == targetRef) ? Objects::isNull : object -> targetRef.equals(object); }}

Predicate的test 接收T类型的数据,返回 boolean 类型,即对数据进行某种规则的评判,如果符合则返回true,否则返回false;Predicate接口还提供了 and、negate、or,与 取反 或等,isEqual 判断两个参数是否相等等默认函数。

Supplier

生产、提供数据:

COPY@FunctionalInterfacepublic interface Supplier {    /**     * Gets a result.     *     * @return a result     */    T get();}

非常easy,get方法返回一个T类数据,可以提供重复的数据,或者随机种子都可以,就这么简单。

函数式接口实战Consumer

Consumer 用的太多了,不想说太多,如下:

COPYpublic class Main {    public static void main(String[] args) {      Stream.of(1,2,3,4,5,6)                .forEach(integer -> System.out.println(integer)); //输出1,2,3,4,5,6    }}

这里使用标准输出,还是产生了副作用,但是这种程度是可以允许的

Function

转换,将字符串转成长度

COPYpublic class Main {    public static void main(String[] args) {       Stream.of("hello","FunctionalInterface")                .map(e->e.length())                .forEach(System.out::println);    }}

运算

COPYpublic class FunctionTest {    public static void main(String[] args) {         public static void main(String[] args) {        Function square = integer -> integer * integer; //定义平方运算        List list = new ArrayList();        list.add(1);        list.add(2);        list.add(3);        list.add(4);        list.stream()                .map(square.andThen(square)) //四次方                .forEach(System.out::println);        System.out.println("------");        list.stream()                .map(square.compose(e -> e - 1)) //减一再平方                .forEach(System.out::println);        System.out.println("------");        list.stream().map(square.andThen(square.compose(e->e/2))) //先平方然后除2再平方                .forEach(System.out::println);    }}

结果如下

COPY11681256------0149------041664

OperatorBinaryOperator

这里实现找最大值:

COPYpublic class BinaryOperatorTest {    public static void main(String[] args) {        Stream.of(2,4,5,6,7,1)                .reduce(BinaryOperator.maxBy(Comparator.comparingInt(Integer::intValue))).ifPresent(System.out::println);    }}

IntOperator

这里实现累加功能:

COPYpublic class BinaryOperatorTest {    public static void main(String[] args) {        IntBinaryOperator intBinaryOperator = (e1, e2)->e1+e2; //定义求和二元操作        IntStream.of(2,4,5,6,7,1)                .reduce(intBinaryOperator).ifPresent(System.out::println);    }}

Predicate

筛选出大于0最小的两个数

COPYpublic class Main {    public static void main(String[] args) {        IntStream.of(200,45,89,10,-200,78,94)                .filter(e->e>0) //过滤小于0的数                .sorted() //自然顺序排序                .limit(2) //取前两个                .forEach(System.out::println);    }}

Supplier

这里一直生产2这个数字,为了能停下来,使用limit

COPYpublic class Main {    public static void main(String[] args) {        Stream.generate(()->2)                .limit(10)                .forEach(System.out::println);    }}

输出结果

COPY2222222222

总结

Java8的Stream 基本上都是使用util.function包下的函数式接口来实现函数式编程的,而函数式接口也就只分为 Function、Operator、Consumer、Predicate、Supplier 这五大类,只要能理解掌握最基础的五大类用法,其他变种也能触类旁通。

本文由传智教育博学谷狂野架构师教研团队发布。

如果本文对您有帮助,欢迎关注点赞;如果您有任何建议也可留言评论私信,您的支持是我坚持创作的动力。

转载请注明出处!