题目链接:239. 滑动窗口最大值
class Solution{private:class MyQue//做一个单调排序的双向队列{public:void push(int val){//在输入阶段就按照前大后小排好,默认从后添加新元素,新元素如果大于队尾,那就队尾出列while(!que.empty()&&que.back()<val){que.pop_back();}que.push_back(val);}void pop(int val){//选择性出队,如果队头是相应的值,才会触发出队if(!que.empty()&&que.front()==val){que.pop_front();}}int getMax(){//因为是从大到小排列,所以队头的就是最大return que.front();}private:deque que;//双向队列};public:vector maxSlidingWindow(vector &nums, int k){vector result;//答案向量MyQue que=MyQue();//显式初始化for(int i=0;i<k;i++){//先往队列里面添加前k个元素que.push(nums[i]);//选择性添加,以构成从大到小的排序}result.push_back(que.getMax());//最大的就取出来当答案for(int i=k;i<nums.size();i++){//如果队头是k以前的元素,就出掉,然后添加新元素,保证区间大小是kque.pop(nums[i-k]);//选择性出列que.push(nums[i]);result.push_back(que.getMax());//取结果}return result;}};
思路
如果用第一时间想到的暴力法,那么需要遍历每个元素来比较,时间复杂度o(nxk)。这样子你会发现重复比较了很多次,比如说k=3;我们第一轮比较了nums[0],nums[1],nums[2];第二轮又会比较nums[1],nums[2],nums[3];但是nums[1],nums[2]我们显然已经比较过了,再比较就重复了。
解题方法
我们就要想办法来降低或取消重复比较的部分。仔细观察发现,区间每次移动都是去掉一个元素,增加一个元素,那么我们可以利用一些办法来记录上一轮的比较结果。这里用到的是一个巧妙的单调双向队列,采用单调队列是因为可以轻易的取得最大值;采用双向队列是因为可以从后面出列,方便我们制作单调队列。
我们在入队的时候,判断队尾元素是否小于我们要入队的元素,如果小于,我们此时入队,单调性就会被破坏。所以要先把队尾元素出列,直到队尾元素大于等于我们要入队的元素,这样子就保证了单调性。
在移动区间的时候,我们先判断队头元素是否等于numsi-k,如果是,则去掉;然后通过上面的方法添加1个新元素。
这样子,我们每轮都取一次队头,就能得到最终答案了。这个方法可能不是那么好理解,尝试着自己画一下图,推理一下,就会发现完美地解决了这个题目。
复杂度
时间复杂度:
O(n)
空间复杂度:
O(k),为队列分配空间
题目链接:347. 前 K 个高频元素
class Solution{public:static bool cmp(pair a,pair b){//cmp是比较函数,用于指定sort的排序顺序return a.second>b.second;}vector topKFrequent(vector &nums, int k){unordered_map record;for(int i:nums){//使用哈希表统计出现次数record[i]++;}vector<pair> vecMap(record.begin(),record.end());//使用向量复制哈希表sort(vecMap.begin(),vecMap.end(),cmp);//对向量进行排序int cnt=0;vector result;for(auto it:vecMap){result.push_back(it.first);if(++cnt==k) break;//选出前k个后就退出}return result;}};
思路
看到出现次数第一时间想到了哈希表
解题方法
既然决定了使用哈希表,那么就要考虑怎么取出现次数大小(value)前k个对应的key。这里使用vector复制哈希表,然后对vector进行排序就得到了结果
复杂度
时间复杂度:
O(nlogn)
空间复杂度:
O(n),创建哈希表和向量
下面是随想录的解析:说实话没懂
class Solution {public:// 小顶堆class mycomparison {public:bool operator()(const pair& lhs, const pair& rhs) {return lhs.second > rhs.second;}};vector topKFrequent(vector& nums, int k) {// 要统计元素出现频率unordered_map map; // mapfor (int i = 0; i < nums.size(); i++) {map[nums[i]]++;}// 对频率排序// 定义一个小顶堆,大小为kpriority_queue<pair, vector<pair>, mycomparison> pri_que;// 用固定大小为k的小顶堆,扫面所有频率的数值for (unordered_map::iterator it = map.begin(); it != map.end(); it++) {pri_que.push(*it);if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为kpri_que.pop();}}// 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组vector result(k);for (int i = k - 1; i >= 0; i--) {result[i] = pri_que.top().first;pri_que.pop();}return result;}};
- 时间复杂度: O(nlogk)
- 空间复杂度: O(n)
思路
这道题目主要涉及到如下三块内容:
- 要统计元素出现频率
- 对频率排序
- 找出前K个高频元素
首先统计元素出现的频率,这一类的问题可以使用map来进行统计。
然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列。
什么是优先级队列呢?
其实就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。
而且优先级队列内部元素是自动依照元素的权值排列。那么它是如何有序排列的呢?
缺省情况下priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)。
什么是堆呢?
堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。
所以大家经常说的大顶堆(堆头是最大元素),小顶堆(堆头是最小元素),如果懒得自己实现的话,就直接用priority_queue(优先级队列)就可以了,底层实现都是一样的,从小到大排就是小顶堆,从大到小排就是大顶堆。
本题我们就要使用优先级队列来对部分频率进行排序。
为什么不用快排呢, 使用快排要将map转换为vector的结构,然后对整个数组进行排序, 而这种场景下,我们其实只需要维护k个有序的序列就可以了,所以使用优先级队列是最优的。
此时要思考一下,是使用小顶堆呢,还是大顶堆?
有的同学一想,题目要求前 K 个高频元素,那么果断用大顶堆啊。
那么问题来了,定义一个大小为k的大顶堆,在每次移动更新大顶堆的时候,每次弹出都把最大的元素弹出去了,那么怎么保留下来前K个高频元素呢。
而且使用大顶堆就要把所有元素都进行排序,那能不能只排序k个元素呢?
所以我们要用小顶堆,因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素。
寻找前k个最大元素流程如图所示:(图中的频率只有三个,所以正好构成一个大小为3的小顶堆,如果频率更多一些,则用这个小顶堆进行扫描)
定义:priority_queue//默认是大顶堆
Type 就是数据类型,Container 就是容器类型(Container必须是用数组实现的容器,比如vector,deque等等,但不能用 list。STL里面默认用的是vector),Functional 就是比较的方式,当需要用自定义的数据类型时才需要传入这三个参数,使用基本数据类型时,只需要传入数据类型,默认是大顶堆