目录

一:认识pandas

1.1 pandas的优势

1.2 下载安装

二:Series数据结构(一维)

2.1 创建Series

创建series对象(一维)

ndarray创建Series对象

“显式索引”的方法定义索引标签

dict创建Series对象(通过字典创建)

标量创建Series对象

2.2 访问Series

位置索引访问

索引标签访问

2.3 Series属性 xxx.xxx

2.4 Series方法xxx.() ->DataFrame也能用

三:DataFrame 数据结构(二维)

3.1 创建DataFrame对象

列表创建DataFame对象

字典 嵌套 列表创建

列表 嵌套 字典创建DataFrame对象

Series创建DataFrame对象

3.2 列索引–操作DataFrame

列索引–选取数据列

列索引—添加数据列

列索引删除数据列

3.3 行索引–操作DataFrame

标签索引选取

整数索引选取

切片 操作多行选取

添加—数据行

删除–数据行

3.4 DataFrame切片

四:常用属性和方法汇总


一:认识pandas

Pandas 是一个开源的第三方 Python 库,从 Numpy 和 Matplotlib 的基础上构建而来,享有数据分析“三剑客之一”的盛名(NumPy、Matplotlib、Pandas)。Pandas 已经成为 Python 数据分析的必备高级工具,它的目标是成为强大、灵活、可以支持任何编程语言的数据分析工具。

1.1 pandas的优势

与其它语言的数据分析包相比,Pandas 具有以下优势

  • Pandas 的 DataFrame 和 Series 构建了适用于数据分析的存储结构;

  • Pandas 简洁的 API 能够让你专注于代码的核心层面;

  • Pandas 实现了与其他库的集成,比如 Scipy、scikit-learn 和 Matplotlib;

1.2 下载安装

pip install pandas==1.4.1 -i 源镜像

二:Series数据结构(一维)

数据结构维度说明
Series1该结构能够存储各种数据类型,比如字符数、整数、浮点数、Python 对象等,Series 用 name 和 index 属性来描述 数据值。Series 是一维数据结构,因此其维数不可以改变。
DataFrame2DataFrame 是一种二维表格型数据的结构,既有行索引,也有列索引。行索引是 index,列索引是 columns。 在创建该结构时,可以指定相应的索引值。
  • Series 是带标签的一维数组,这里的标签可以理解为索引,但这个索引并不局限于整数,它也可以是字符类型,比如 a、b、c 等;

  • DataFrame 是一种表格型数据结构,它既有行标签,又有列标签。

2.1 创建Series

  • 创建series对象(一维)
import pandas as pd #取别名(as)with as(上下文管理器) seriec_obj = pd.Series(data, index, dtype, copy)(左边的值为右边值的索引---标签)​# data输入的数据,可以是----列表、数组,字典,常量、ndarray等。​# index 索引值必须是惟一的,如果没有传递索引,则默认为 np.arrange(n)。(根据标签取值,不要重复欧~)# dtype dtype表示数据类型,如果没有提供,则会自动判断得出。# copy表示对 data 进行拷贝,默认为 False。
  • ndarray创建Series对象
import pandas as pdimport numpy as np​arr_str = np.array(['a', 'b', 'c', 'd'])ser_obj = pd.Series(arr_str)print(ser_obj)

ndarray 是 NumPy 中的数组类型,当 data 是 ndarry 时,传递的索引必须具有与数组相同的长度。假如没有给 index 参数传参,在默认情况下,索引值将使用是 range(n) 生成,其中 n 代表数组长度

上述示例中没有传递任何索引,所以索引默认从 0 开始分配 ,其索引范围为 0 到len(data)-1,即 0 到 3。这种设置方式被称为“隐式索引”。

———-自己定义索引叫法————-index

——-字典的键直接充当标签.

  • “显式索引”的方法定义索引标签
import numpy as np​arr_str = np.array(['张三', '李四', '王五', '赵六'])# 自定义索引标签(即显示索引)ser_obj = pd.Series(arr_str, index=[1, 2, 3, 4])print(ser_obj)
  • dict创建Series对象(通过字典创建)
import pandas as pd​data = {'a': 0., 'b': 1., 'c': 2.}ser_data = pd.Series(data)print(ser_data)

您可以把 dict 作为输入数据。如果没有传入索引时会按照字典的键来构造索引;反之,当传递了索引时需要将索引标签与字典中的值一一对应

import pandas as pd​data = {'a': 0., 'b': 1., 'c': 2.}ser_data = pd.Series(data, index=['b', 'c', 'd', 'a'])print(ser_data)

当传递的索引值无法找到与其对应的值时,使用 NaN(非数字)填充。

——–通过字典对象创建,不能设置 index .(因为字典有标签名了,index不是修改啦.–index是指定标签.)

—当标签是原始的01234…..时,可以通过index指定标签.

  • 标量创建Series对象
import pandas as pd​ser_data = pd.Series(5, index=[0, 1, 2, 3])print(ser_data)

2.2 访问Series

访问 Series 序列中元素,分为两种方式,一种是位置索引访问;另一种是索引标签访问。

————–原始的标签(索引)访问时–>左闭右开, index定义后,—>都是闭合,都拿到.

  • 位置索引访问
import pandas as pd​ser_data = pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])print(ser_data)print(ser_data[0]) # 位置下标print(ser_data['a']) # 标签下标

这种访问方式与 ndarray 和 list 相同,使用元素自身的下标进行访问。我们知道数组的索引计数从 0 开始,这表示第一个元素存储在第 0 个索引位置上,以此类推,就可以获得 Series 序列中的每个元素

通过切片的方式访问 Series 序列中的数据

import pandas as pdser_data = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])print(ser_data[:3])
  • 索引标签访问

Series 类似于固定大小的 dict,把 index 中的索引标签当做 key,而把 Series 序列中的元素值当做 value,然后通过 index 索引标签来访问或者修改元素值。

import pandas as pd​ser_data = pd.Series([6, 7, 8, 9, 10], index=['a', 'b', 'c', 'd', 'e'])print(ser_data[['a', 'c', 'd']])

2.3 Series属性 xxx.xxx

名称属性
axes以列表的形式返回所有行索引标签。
dtype返回对象的数据类型
empty返回一个空的 Series 对象。 —-爬虫多线程,队列
ndim返回输入数据的维数。
size返回输入数据的元素数量。
values以 ndarray 的形式返回 Series 对象。
index返回一个RangeIndex对象,用来描述索引的取值范围。–直接把标签显示出来.
import pandas as pdimport numpy as npser_data = pd.Series(np.array([10, 20, 30, 40, 50]))print(ser_data)​print(ser_data.axes)print(ser_data.dtype)print(ser_data.empty)print(ser_data.ndim)print(ser_data.size)print(ser_data.values)print(ser_data.index)

2.4 Series方法xxx.() ->DataFrame也能用

  • 如果想要查看 Series 的某一部分数据,可以使用 head() 或者 tail() 方法

import numpy as np​ser_data = pd.Series(np.random.randn(5))<--#######print(ser_data)# 返回前三行数据print(ser_data.head(3))

head() 返回前 n 行数据,默认显示前 5 行数据

import pandas as pdimport numpy as np​ser_data = pd.Series(np.array([1, 2, 3, 4, 5, 6, 7]))print(ser_data.tail)# 返回后三行数据print(ser_data.tail(3))

tail() 返回的是后 n 行数据,默认为后 5 行

  • isnull()notnull() 用于检测 Series 中的缺失值(不存在的数据)。所谓缺失值,顾名思义就是值不存在、丢失、缺少。

  • 在实际的数据分析任物中,数据的收集往往要经历一个繁琐的过程。在这个过程中难免会因为一些不可抗力,或者人为因素导致数据丢失的现象。这时,我们可以使用相应的方法对缺失值进行处理,比如数据补齐等方法。

import pandas as pd​# None代表缺失数据ser_data = pd.Series([1, 2, 5, None])print(pd.isnull(ser_data)) # 是空值返回True

isnull():如果为值不存在或者缺失,则返回 True。

import pandas as pd​# None代表缺失数据ser_data = pd.Series([1, 2, 5, None])print(pd.notnull(ser_data)) # 空值返回False

notnull():如果值不存在或者缺失,则返回 False。

三:DataFrame 数据结构(二维)

  • DataFrame 是 Pandas 的重要数据结构之一,也是在使用 Pandas 进行数据分析过程中最常用的结构之一,可以这么说,掌握了 DataFrame 的用法,你就拥有了学习数据分析的基本能力。

  • DataFrame 一个表格型的数据结构,既有行标签(index),又有列标签(columns),它也被称异构数据表,所谓异构,指的是表格中每列的数据类型可以不同,比如可以是字符串、整型或者浮点型等。

  • DataFrame 结构类似于 Execl 的表格型,表格中列标签的含义如下所示:

indexstudent_idstudent_namestudent_num
01001James82.6
11002Pitter76.5
21003Jack92.3
31004Alice88.5

同 Series 一样,DataFrame 自带行标签索引,默认为“隐式索引”即从 0 开始依次递增,行标签与 DataFrame 中的数据项一一对应。上述表格的行标签从 0 到 3,共记录了 4 条数据(图中将行标签省略)。当然你也可以用“显式索引”的方式来设置行标签。

下面对 DataFrame 数据结构的特点做简单地总结,如下所示:

  • DataFrame 每一列的标签值允许使用不同的数据类型;

  • DataFrame 是表格型的数据结构,具有行和列;

  • DataFrame 中的每个数据值都可以被修改。

  • DataFrame 结构的行数、列数允许增加或者删除;

  • DataFrame 有两个方向的标签轴,分别是行标签和列标签;

  • DataFrame 可以对行和列执行算术运算。

3.1 创建DataFrame对象

  • 使用下列方式创建一个空的 DataFrame,这是 DataFrame 最基本的创建方法

import pandas as pddf = pd.DataFrame()print(df)
  • 列表创建DataFame对象
import pandas as pddata = [1,2,3,4,5]df = pd.DataFrame(data)print(df)​​​​​

通过二维数组创建:

---a=pd.DataFrame(np.random.randint(30,40,size(3,5)))--->random创建二维数组

使用嵌套列表(二维数组)创建 DataFrame 对象 :

import pandas as pd​data = [['Alex', 10], ['Bob', 12], ['Clarke', 13]]df = pd.DataFrame(data, columns=['Name', 'Age'])print(df) ​-----------columns指定列标签,index指定行标签.​
  • 字典 嵌套 列表创建

—字典当中的就是列表的列标签.

import pandas as pd​data = {'Name': ['Tom', 'Jack', 'Steve', 'Ricky'], 'Age': [28, 34, 29, 42]}df = pd.DataFrame(data)print(df)​

data 字典中,键对应的值的元素长度必须相同(也就是列表长度相同)。如果传递了索引,那么索引的长度应该等于数组的长度;如果没有传递索引,那么默认情况下,索引将是 range(n),其中 n 代表数组长度。

添加自定义的行标签

import pandas as pd​data = {'Name': ['Tom', 'Jack', 'Steve', 'Ricky'], 'Age': [28, 34, 29, 42]}df = pd.DataFrame(data, index=['rank1', 'rank2', 'rank3', 'rank4'])print(df)​
  • 列表 嵌套 字典创建DataFrame对象
import pandas as pd​data = [{'num': 1, 'result': 2}, {'num': 5, 'result': 10, 'number': 20}]df = pd.DataFrame(data, index=['first', 'second'])print(df)​

如果其中某个元素值缺失,也就是字典的 key 无法找到对应的 value,将使用 NaN 代替。

使用字典嵌套列表以及行、列索引表创建一个 DataFrame 对象。

import pandas as pddata = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]df1 = pd.DataFrame(data, index=['first', 'second'], columns=['a', 'b'])df2 = pd.DataFrame(data, index=['first', 'second'], columns=['a', 'b1'])print(df1)print(df2)​
  • Series创建DataFrame对象

    传递一个字典形式的 Series,从而创建一个 DataFrame 对象,其输出结果的行索引是所有 index 的合集

import pandas as pd​dict_data = { 'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) }df = pd.DataFrame(dict_data)print(df)----one two 为列标签.​

3.2 列索引–操作DataFrame

DataFrame 可以使用列索(columns index)引来完成数据的选取、添加和删除操作。

  • 列索引–选取数据列
import pandas as pd​dict_data = { 'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) }df = pd.DataFrame(dict_data)print(df['one'])​
  • 列索引—添加数据列
import pandas as pd​dict_data = { 'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}df = pd.DataFrame(dict_data)# 使用df['列']=值,-->插入新的数据列df['three'] = pd.Series([10, 20, 30], index=['a', 'b', 'c'])print(df)# 将已经存在的数据列做相加运算df['four'] = df['one'] + df['three']print(df)​

除了使用df[]=value的方式外(插入到最后面),您还可以使用 insert() 方法插入新的列

insert() —>第一个参数为插入列的位置;(插入到前面)

import pandas as pd​info = [['Jack', 18], ['Helen', 19], ['John', 17]]df = pd.DataFrame(info, columns=['name', 'age'])print(df)# 注意是column参数# 数值1代表插入到columns列表的索引位置df.insert(1, column='score', value=[91, 90, 75])print(df)​​
  • 列索引删除数据列

    通过 delpop() 都能够删除 DataFrame 中的数据列

    ——-直接删除列. del xxx[‘column’]

3.3 行索引–操作DataFrame

理解了上述的列索引操作后,行索引操作就变的简单。下面看一下,如何使用行索引来选取 DataFrame 中的数据。

  • 标签索引选取

    可以将行标签传递给 loc 函数,来选取数据

———-第一个参数为行索引;第二个参数可限制范围(列索引)

import pandas as pd dict_data = { 'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}df = pd.DataFrame(dict_data)print(df)print(df.loc['b', "one"])​
  • 整数索引选取

    通过将数据行所在的索引位置传递给 iloc 函数,也可以实现数据行选取

    —-iloc函数只能通过整数索引取值.

import pandas as pd​dict_data = { 'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) }df = pd.DataFrame(dict_data)print(df)print(df.iloc[2])​
  • 切片 操作多行选取

    可以使用切片的方式同时选取多行

import pandas as pd​dict_data = { 'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}df = pd.DataFrame(dict_data)# 左闭右开print(df[2:4])​
  • 添加—数据行

    使用 append() 函数,可以将新的数据行添加到 DataFrame 中,该函数会在行末追加数据行

import pandas as pd​df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b'])df2 = pd.DataFrame([[5, 6], [7, 8]], columns=['a', 'b'])# 在行末追加新数据行df = df.append(df2)print(df)​
  • 删除–数据行

    drop(‘标签’) 删除一行.

    使用行索引标签,从 DataFrame 中删除某一行数据。如果索引标签存在重复,那么它们将被一起删除

import time​import pandas as pd​df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b'])df2 = pd.DataFrame([[5, 6], [7, 8]], columns=['a', 'b'])df = df.append(df2)​print(df)# 注意此处调用了drop()方法​df = df.drop(0)print(df)​

3.4 DataFrame切片

  • 直接使用中括号时:

    • 索引优先对列进行操作

    • 切片优先对行进行操作

import pandas as pdimport numpy as np​​dict_data = pd.DataFrame(data=np.random.randint(60,90, size=(5,6)),index=['张三', '李四', '王五', '赵六', '坤哥'],columns=["语文","数学","英语","地理","历史", "化学"])​print(dict_data)​# 行切片print(dict_data[1:3])print(dict_data["张三":"赵六"])​​# 列切片 loc iloc# 对列作切片,也必须先对行做切片print(dict_data.iloc[:, 1:4])print(dict_data.loc[:, "数学":"化学"])​# 对行和列作切片操作print(dict_data.iloc[1:3, 1:4])print(dict_data.loc["张三":"王五", "语文":"历史"])

四:常用属性和方法汇总

DataFrame 的属性和方法,与 Series 相差无几

名称属性&方法描述
T行和列转置。
axes返回一个仅以行轴标签和列轴标签为成员的列表。
dtypes返回每列数据的数据类型。
emptyDataFrame中没有数据或者任意坐标轴的长度为0,则返回True。
ndim轴的数量,也指数组的维数。
shape返回一个元组,表示了 DataFrame 维度。
sizeDataFrame中的元素数量。
values使用 numpy 数组表示 DataFrame 中的元素值。
head()返回前 n 行数据。
tail()返回后 n 行数据。
import pandas as pd​dict_data = {'Name': pd.Series(['张三', '李四', "王五", '赵六', '坤哥', '凡凡', '峰峰']),'age': pd.Series([25, 26, 25, 28, 23, 29, 23]),'Height': pd.Series([174.23, 173.24, 173.98, 172.56, 183.20, 174.6, 183.8])}# 构建DataFramedf = pd.DataFrame(dict_data)# 输出seriesprint(df)print("-*-" * 30)# 输出DataFrame的转置,也就是把行和列进行交换print(df.T)​print("-*-" * 30)# 返回一个行标签、列标签组成的列表print(df.axes)​print("-*-" * 30)# 输出行、列标签类型print(df.dtypes)​print("-*-" * 30)# 判断输入数据是否为空,若为 True 表示对象为空print(df.empty)​print("-*-" * 30)# 返回数据对象的维数。DataFrame 是一个二维数据结构print(df.ndim)​print("-*-" * 30)# DataFrame的形状print(df.shape)​print("-*-" * 30)# DataFrame的中元素个数print(df.size)​print("-*-" * 30)# DataFrame的数据print(df.values)​print("-*-" * 30)# 获取前3行数据print(df.head(3))​print("-*-" * 30)# 获取后2行数据print(df.tail(2))​