程序示例精选

Python OpenCV识别行人入口进出人数统计

如需安装运行环境或远程调试,见文章底部微信名片,由专业技术人员远程协助!

前言

这篇博客针对《Python OpenCV识别行人入口进出人数统计》编写代码,功能包括了入口行人识别,人数统计。代码整洁,规则,易读。应用推荐首选。


文章目录

一、所需工具软件

二、使用步骤

1. 引入库

2.识别特征图像

3. 运行结果

在线协助


一、所需工具软件

1. Python3.6以上

2. Pycharm代码编辑器

3. OpenCV, Numpy库

二、使用步骤

1.引入库

代码如下(示例):

#导入需要的包import numpy as npimport cv2import Personimport time

2.识别特征图像

代码如下(示例):

video=cv2.VideoCapture("counting_test.avi")#输出视频fourcc = cv2.VideoWriter_fourcc(*'XVID')#输出视频制编码out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))w = video.get(3)h = video.get(4)print("视频的原宽度为:")print(int(w))print("视频的原高度为:")area = h*wprint(int(h))areaTHreshold = area/500print('Area Threshold', areaTHreshold)#计算画线的位置line_up = int(1*(h/4))line_down = int(2.7*(h/4))up_limit = int(.5*(h/4))down_limit = int(3.2*(h/4))print ("Red line y:",str(line_down))print ("Green line y:", str(line_up))pt5 = [0, up_limit]pt6 = [w, up_limit]pts_L3 = np.array([pt5,pt6], np.int32)pts_L3 = pts_L3.reshape((-1,1,2))pt7 =  [0, down_limit]pt8 =  [w, down_limit]pts_L4 = np.array([pt7,pt8], np.int32)pts_L4 = pts_L4.reshape((-1,1,2))#背景剔除# fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows = True)fgbg = cv2.createBackgroundSubtractorKNN()#用于后面形态学处理的核kernel = np.ones((3,3),np.uint8)kerne2 = np.ones((5,5),np.uint8)kerne3 = np.ones((11,11),np.uint8)while(video.isOpened()):    ret,frame=video.read()    if frame is None:        break    #应用背景剔除    gray = cv2.GaussianBlur(frame, (31, 31), 0)    #cv2.imshow('GaussianBlur', frame)    #cv2.imshow('GaussianBlur', gray)    fgmask = fgbg.apply(gray)    fgmask2 = fgbg.apply(gray)    try:        #***************************************************************        #二值化        ret,imBin= cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY)        ret,imBin2 = cv2.threshold(fgmask2,200,255,cv2.THRESH_BINARY)        #cv2.imshow('imBin', imBin2)        #开操作(腐蚀->膨胀)消除噪声        mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kerne3)        mask2 = cv2.morphologyEx(imBin2, cv2.MORPH_OPEN, kerne3)        #闭操作(膨胀->腐蚀)将区域连接起来        mask =  cv2.morphologyEx(mask , cv2.MORPH_CLOSE, kerne3)        mask2 = cv2.morphologyEx(mask2, cv2.MORPH_CLOSE, kerne3)        #cv2.imshow('closing_mask', mask2)        #*************************************************************    except:        print('EOF')        print ('IN:',cnt_in+count_in)        print ('OUT:',cnt_in+count_in)        break    #找到边界    _mask2,contours0, hierarchy = cv2.findContours(mask2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)    for cnt in contours0:        rect = cv2.boundingRect(cnt)#矩形边框        area=cv2.contourArea(cnt)#每个矩形框的面积        if area>areaTHreshold:            #************************************************            #moments里包含了许多有用的信息            M=cv2.moments(cnt)            cx=int(M['m10']/M['m00'])#计算重心            cy=int(M['m01']/M['m00'])            x, y, w, h = cv2.boundingRect(cnt)#x,y为矩形框左上方点的坐标,w为宽,h为高            new=True            if cy in range(up_limit,down_limit):                for i in persons:                    if abs(cx-i.getX())<=w and abs(cy-i.getY())80:                                count_in=w/40                                print("In:执行了/60")               time.strftime("%c"))                        elif i.going_DOWN(line_down,line_up)==True:                            # cv2.circle(frame, (cx, cy), 5, (0, 0, 255), -1)                            # img = cv2.rectangle(frame, (x, y), (x + w, y + h), line_down_color, 2)time.strftime("%c"))                        break                        #状态为1表明                    if i.getState() == '1':                        if i.getDir() == 'down' and i.getY() > down_limit:                            i.setDone()                        elif i.getDir() == 'up' and i.getY() < up_limit:                            i.setDone()                    if i.timedOut():                        # 已经记过数且超出边界将其移出persons队列                        index = persons.index(i)                        persons.pop(index)                        del i  # 清楚内存中的第i个人                if new == True:                    p = Person.MyPerson(pid, cx, cy, max_p_age)                    persons.append(p)                    pid += 1print("进入的总人数为:")print(cnt_in)print("出去的总人数为:")print(cnt_out)video.release();cv2.destroyAllWindows()

3.运行结果如下:

三、在线协助:

如需安装运行环境或远程调试,见文章底部微信名片,由专业技术人员远程协助!