【码银送书第十三期】《ChatGPT原理与架构》

OpenAI 在 2022 年 11 月推出了人工智能聊天应用—ChatGPT。它具有广泛的应用场景,在多项专业和学术基准测试中表现出的智力水平,不仅接近甚至有时超越了人类的平均水平。这使得 ChatGPT 在推出之初就受到广大用户的欢迎,被科技界誉为人工智能领域的新里程碑。

人们在为生成式人工智能所带来的多模态内容创作效率的提升而欢呼时,常常低估ChatGPT的推理能力。这种能力使ChatGPT不仅能作为新一代人机交互的核心,还能作为智能代理来构建自动化和半自动化的工作流程,甚至使它能与工业控制或机器人领域相结合,引发深刻的社会变革。

许多人低估了这种变革的影响力。以当前研发和商业应用的迭代速度来看,预计在未来三至五年内,这种变革将逐渐渗透到人类生活和生产的各个方面,极大地提升现有的生产力。若要追溯上一个被称为“巨大技术变革”的时代,很多人都会毫不犹豫地说是互联网开创期。这次变革也将重塑内容生产相关的商业模式,改变现有的工作方式,甚至推动生产方式的变革。当然,这还需要依赖下一代大语言模型在内容输出的可控性方面的突破。

图片[1] - 【码银送书第十三期】《ChatGPT原理与架构》 - MaxSSL

ChatGPT原理与架构:

大模型的预训练、迁移和中间件编程

程戈 著

大模型领域技术专家和布道者实践经验总结

阿里、Google等企业多位大模型技术专家联袂推荐

内容简介

这是一本深入阐述ChatGPT等大模型的工作原理、运行机制、架构设计和底层技术,以及预训练、迁移、微调和中间件编程的著作。它将帮助我们从理论角度全面理解大模型,从实践角度更好地应用大模型,是作者成功训练并部署大模型的过程复盘和经验总结。

第1章介绍了ChatGPT等大模型的发展历程、技术演化和技术栈等基础知识;
第2~5章深入讲解了Transformer的架构原理,并从GPT-1的生成式预训练到GPT-3的稀疏注意力机制详细描述了GPT系列的架构演进;
第6~8章从底层技术实现的角度讲解了大模型的训练策略、数据处理方法,以及如何利用策略优化和人类反馈来进一步提升模型的表现;
第9~10章首先详细讲解了大模型在垂直领域的低算力迁移方法,并给出了医疗和司法领域的迁移案例,然后讲解了大模型的中间件编程;
第11章对GPT的未来发展趋势进行预测,探讨数据资源、自回归模型的局限性,以及大模型时代具身智能的可行路线。

作者简介

程戈
博士生导师,湘潭大学计算机学院·网络空间安全学院教授,湘潭大学技术转移中心副主任,湘潭市京东智能城市与大数据研究院副院长,智慧司法与数字治理湖南省重点实验室副主任,CCF计算法学会执委。

大模型领域技术专家和布道者,作为两项科技部国家重点研发子课题的负责人,与成都数之联等多家企业合作推动人工智能在司法领域的落地,带领团队开发了JusticeGPT司法大模型,不同于其他的以提升司法领域知识问答能力为核心的司法大模型,该大模型致力于提升司法文献检索增强生成以及司法文档的多跳信息聚合能力,并通过特定的多任务表征与控制指令生成框架重构司法信息化系统的业务中台,实现司法业务编排以及工作流自动化。

连续创业者,先后创立湘潭安道致胜信息科技有限公司等多家企业,曾经作为共同创始人加盟美国WiFi Free llc. ,开发了WiFi Free、WiFi Analyzer” />

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享