使用深度学习算法检测芒果具有显著的优势和应用价值。以下是几个主要原因:

  1. 特征学习的能力:深度学习,特别是卷积神经网络(CNN),能够从大量的芒果图像中自动学习和提取特征。这些特征可能是传统方法难以手动设计的,但对于芒果的检测和识别却至关重要。
  2. 适应复杂环境:芒果生长在不同的环境和条件下,其外观、颜色、形状等都可能发生变化。深度学习算法通过大量的训练数据,可以学习到这些变化,从而在不同环境下都能准确地检测芒果。
  3. 处理大数据:在芒果检测中,通常需要处理大量的图像数据。深度学习算法可以高效地处理这些数据,并快速给出检测结果。
  4. 减少人工干预:传统的芒果检测方法可能需要人工目视观察或者使用特定的工具,这既费时又费力。深度学习算法可以实现自动化检测,减少人工干预,提高检测效率。
  5. 提高检测准确性:深度学习算法在训练过程中不断优化,可以实现对芒果的精确检测。与传统方法相比,深度学习算法具有更高的检测准确率和鲁棒性。

综上所述,使用深度学习算法检测芒果可以提高检测效率、准确性和自动化水平,是芒果检测领域的一种重要技术手段。

本文介绍了基于深度学习yolov8的芒果检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 – Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

1、安装pytorch

根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。

①GPU版本的pytorch安装

对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):

打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:

②CPU版本pytorch安装

打开pytorch官网,选择CPU版本安装pytorch,如下图:

2、安装yolov8

在命令行使用如下命令安装:

pip install ultralytics

二、数据集准备

芒果实例分割数据集包含453个训练数据,91个测试数据,数据如下所示:

为了使用yolov8进行训练,需要将数据集转为yolo格式,本文提供转换好的数据集连接:mango-yolov8数据集

三、模型配置及训练

1、数据集配置文件

创建数据集配置文件mango.yaml,内容如下(将path路径替换为自己的数据集路径):

# Ultralytics YOLO , AGPL-3.0 license# COCO 2017 dataset http://cocodataset.org by Microsoft# Example usage: yolo train data=coco.yaml# parent# ├── ultralytics# └── datasets# └── coco← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]path: D:\DeepLearning\datasets\csdn\mango-segmentation-dataset\mango_yolov8# 替换为自己的数据集路径train: images/train val: images/test test: images/test # Classesnames:# 0: normal0: mango

2、训练模型

使用如下命令训练模型,数据配置文件路径更改为自己的路径,model根据自己的需要使用yolov8n/s/l/x版本,其他参数根据自己的需要进行设置:

yolo segment train project=mango name=train exist_ok data=mango/mango.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640

3、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo segment val imgsz=640 model=mango/train/weights/best.pt data=mango/mango.yaml

精度如下:

Ultralytics YOLOv8.1.10Python-3.9.18 torch-2.2.0 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)YOLOv8n-seg summary (fused): 195 layers, 3258259 parameters, 0 gradients, 12.0 GFLOPsval: Scanning D:\DeepLearning\datasets\csdn\mango-segmentation-dataset\mango_yolov8\labels\test.cache... 90 images, 0 backgrounds, 0 corrupt: 100%|██████████| 90/90 [00:00from PIL import Imagefrom ultralytics import YOLO # 加载预训练的YOLOv8n模型model = YOLO('best.pt') image_path = 'test.jpg'results = model(image_path)# 结果列表 # 展示结果for r in results:im_array = r.plot()# 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])# RGB PIL图像im.show()# 显示图像im.save('results.jpg')# 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

代码下载连接:基于yolov8的芒果计数分割系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出