1、设计想法
原理与之前的串口发送模块一样,1位的数据位和8位的数据位再加上1位的停止位。唯一不同的是在接收的时候要考虑到有干扰的情况下,为了避免干扰,我们对每位数据进行多次采样,按出现概率大的值为该数据位的值。
如果按照通常想法在每bits位中间取值的话,bit3位出现图中的干扰很有可能会读出错误的值。所以需要对每位进行多次抽样进行判断。
每位要抽8次的话,那需要将每个波特段分成9等分。
2、状态机设定
3、模块代码
`timescale 1ns / 1ps//////////////////////////////////////////////////////////////////////////////////// Company: // Engineer: Lclone// // Create Date: 2022/12/16 15:37:44// Design Name: uart_byte_rx// Module Name: uart_byte_rx// Project Name: uart_byte_rx// Target Devices: // Tool Versions: // Description: 8位串口发送模块// // Dependencies: // // Revision:// Revision 0.01 - File Created// Additional Comments:// //////////////////////////////////////////////////////////////////////////////////module uart_byte_rx # ( parameter RX_BAUD = 9600,//波特率 parameter CLK_FQC = 50_000_000,//模块时钟频率 parameter BAUD_CNT = CLK_FQC/RX_BAUD)//模块每波特需要计数的次数(设置此端口方便仿真用) ( input Clk,//时钟频率接口 input Rst_n,//复位接口 input Uart_rx,//串口接收接口 output reg [7:0] Data//接收到的数据接口 ); reg uart_rx_r;//延一拍 reg uart_rx_rr;//延两拍 reg receiv_begin;//接收开始信号 reg receiv_flag;//接收状态信号 reg [ 3:0] state;//状态机寄存器 reg [15:0] baud_cnt;//波及计数器 reg [ 3:0] sampel_cnt;//采样计数器 reg sampel_en;//采样使能 reg sampel_ref;//样本寄存器 reg [ 3:0] acc;//累加寄存器 reg [ 3:0] bit_cnt;//数据位寄存器 always @(posedge Clk) begin //下降沿捕获 uart_rx_r <= Uart_rx; uart_rx_rr <= uart_rx_r; end always @(posedge Clk or negedge Rst_n) begin//接收信号发生 if(Rst_n == 0) receiv_begin <= 0; else if(state == 0 & uart_rx_rr & ~uart_rx_r) receiv_begin <= 1'b1; else receiv_begin <= 0; end always @(posedge Clk or negedge Rst_n) begin//状态机 if(Rst_n == 0) begin state <= 0; sampel_ref <= 8'b0; acc <= 8'b0; Data <= 8'b0; end else case(state) 0: //空闲状态 if(receiv_begin == 1) state <= 3'd1; else state <= 0; 1: begin//抽样状态 if(sampel_en == 1) begin sampel_ref <= Uart_rx; state <= 3'd2; end else state <= 3'b1; end 2: begin//数据判断状态 acc = 4) begin Data[7] <= 1'b1; state <= 3'd3;acc <= 8'b0; end else begin Data[7] <= 0; state <= 3'd3;acc <= 8'b0; end end else state <= 3'd1; end 3: begin//数据移位状态 if(bit_cnt < 8) begin Data > 1; state <= 3'd1; end else state <= 0; end default:; endcase end always @(posedge Clk or negedge Rst_n) begin//接收进行标志 if(Rst_n == 0) receiv_flag <= 0; else if(receiv_begin == 1) receiv_flag <= 1'b1; else if(bit_cnt == 9 & baud_cnt == BAUD_CNT - 1) receiv_flag <= 1'b0; end always @(posedge Clk or negedge Rst_n) begin//波特计数 if(Rst_n == 0) baud_cnt <= 0; else if(receiv_flag == 1) begin if(baud_cnt == BAUD_CNT - 1) baud_cnt <= 0; else baud_cnt <= baud_cnt + 1'b1; end else baud_cnt <= 0; end always @(posedge Clk or negedge Rst_n) begin//采样计数 if(Rst_n == 0) begin sampel_cnt <= 0; sampel_en <= 0; end else if(receiv_flag == 1) begin case(baud_cnt) BAUD_CNT/9*1-1 : begin sampel_cnt <= 0; sampel_en <=1; end BAUD_CNT/9*2-1 : begin sampel_cnt <= 1; sampel_en <=1; end BAUD_CNT/9*3-1 : begin sampel_cnt <= 2; sampel_en <=1; end BAUD_CNT/9*4-1 : begin sampel_cnt <= 3; sampel_en <=1; end BAUD_CNT/9*5-1 : begin sampel_cnt <= 4; sampel_en <=1; end BAUD_CNT/9*6-1 : begin sampel_cnt <= 5; sampel_en <=1; end BAUD_CNT/9*7-1 : begin sampel_cnt <= 6; sampel_en <=1; end BAUD_CNT/9*8-1 : begin sampel_cnt <= 7; sampel_en <=1; end BAUD_CNT/9*9-1 : sampel_cnt <= 0; default:sampel_en <=0; endcase end end always @(posedge Clk or negedge Rst_n) begin//数据位计数 if(Rst_n == 0) bit_cnt <= 0; else if(bit_cnt == 9 & baud_cnt == BAUD_CNT - 1) bit_cnt <= 0; else if(baud_cnt == BAUD_CNT - 1) bit_cnt <= bit_cnt + 1'b1; endendmodule
4、仿真验证(1)仿真激励文件
`timescale 1ns / 1ps//////////////////////////////////////////////////////////////////////////////////// Company: // Engineer: // // Create Date: 2022/12/16 21:36:04// Design Name: // Module Name: uart_byte_rx_tb// Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision:// Revision 0.01 - File Created// Additional Comments:// //////////////////////////////////////////////////////////////////////////////////module uart_byte_rx_tb(); reg CLK_50M; reg RST_N; wire [7:0] Data; reg Uart_rx; reg [7:0] test_data; uart_byte_rx # ( .RX_BAUD (9600), .CLK_FQC (50_000_000), .BAUD_CNT (50)) uart_byte_rx_inst ( .Clk (CLK_50M), .Rst_n (RST_N), .Uart_rx (Uart_rx), .Data (Data) ); always #10 CLK_50M <= ~CLK_50M; initial begin CLK_50M <= 1'b0; RST_N <= 1'b0; Uart_rx <= 1'b1; test_data <= 8'h0; #100 RST_N <= 1'b1; #20 test_data <= 8'haf; #1000 Uart_rx <= 1'b0; #1000 Uart_rx <= test_data[0]; #1000 Uart_rx <= test_data[1]; #1000 Uart_rx <= test_data[2]; #1000 Uart_rx <= test_data[3]; #1000 Uart_rx <= test_data[4]; #1000 Uart_rx <= test_data[5]; #1000 Uart_rx <= test_data[6]; #1000 Uart_rx <= test_data[7]; #1000 Uart_rx <= 1'b1; #1000 test_data <= 8'h56; #1000 Uart_rx <= 1'b0; #1000 Uart_rx <= test_data[0]; #1000 Uart_rx <= test_data[1]; #1000 Uart_rx <= test_data[2]; #1000 Uart_rx <= test_data[3]; #1000 Uart_rx <= test_data[4]; #1000 Uart_rx <= test_data[5]; #1000 Uart_rx <= test_data[6]; #1000 Uart_rx <= test_data[7]; #1000 Uart_rx <= 1'b1; #1000 $stop; end endmodule
(2)仿真结果