1. 绪论
在前面文章中提到空间直角坐标系相互转换,测绘坐标转换时,一般涉及到的情况是:两个直角坐标系的小角度转换。这个就是我们经常在测绘数据处理中,WGS-84坐标系、54北京坐标系、80西安坐标系、国家2000坐标系之间的转换。
所谓小角度转换,指直角坐标系\(XOY\)和直角坐标系\(X’O’Y’\)之间,对应轴的旋转角度很小,满足泰勒级数展开后的线性模型。
常见的三维坐标转换模型有[1]:
- 布尔沙模型
- 莫洛琴斯基模型
- 范式模型
但,当两个坐标系对应轴的旋转角度大道一定程度时,则无法使用低阶的泰勒级数展开,且迭代的计算量、精度、速度无法取得平衡[2]。存在以下缺点:
- 仅适用于满足近似处理的小角度转换
- 设计复杂的三角函数运算
- 需要迭代计算
罗德里格矩阵是摄影测量中的常见方法,在该方法中,不需要进行三角函数的计算和迭代运算。计算过程简单明了,易于编程实现。不仅适用于小角度的坐标转换,也适用于大角度的空间坐标转换。
本文将介绍罗德里格矩阵的基本原理和C#实现,并用实例证明解算的有效性。
2. 罗德里格矩阵坐标转换原理2.1 坐标转换基本矩阵
两个空间直角坐标系分别为\(XOY\)和\(X’O’Y’\),坐标系原点不一致,存在三个平移参数\(\Delta X\)、\(\Delta Y\)、\(\Delta Z\)。它们间的坐标轴也相互不平行,存在三个旋转参数\(\epsilon x\)、\(\epsilon y\)、\(\epsilon z\)。同一点A在两个坐标系中的坐标分别为\((X,Y,Z)\)和\((X’,Y’,Z’)\)。
显然,这两个坐标系通过坐标轴的平移和旋转变换可取得,坐标间的转换关系如下:
\[\left[\begin{array}{l}X \\Y \\Z\end{array}\right]=\lambda R\left[\begin{array}{l}X^{\prime} \\Y^{\prime} \\Z^{\prime}\end{array}\right]+\left[\begin{array}{l}\Delta X \\\Delta Y \\\Delta Z\end{array}\right] \tag{1}\]
其中,\(\lambda\)是比例因子,\(R\left(\varepsilon_Y\right) R\left(\varepsilon_X\right) R\left(\varepsilon_Z\right)\)分别是绕Y轴,X轴,Z轴的旋转矩阵。注意,旋转的顺序不同,\(R\) 的表达形式不同。
\[\begin{aligned}R & =R\left(\varepsilon_Y\right) R\left(\varepsilon_X\right) R\left(\varepsilon_Z\right) \\& =\left[\begin{array}{ccc}\cos \varepsilon_Y \cos \varepsilon_Z-\sin \varepsilon_Y \sin \varepsilon_X \sin \varepsilon_Z & -\cos \varepsilon_Y \sin \varepsilon_Z-\sin \varepsilon_Y \sin \varepsilon_X \cos \varepsilon_Z & -\sin \varepsilon_Y \cos \varepsilon_X \\\cos \varepsilon_X \sin \varepsilon_Z & \cos \varepsilon_X \cos \varepsilon_Z & -\sin \varepsilon_X \\\sin \varepsilon_Y \cos \varepsilon_Z+\cos \varepsilon_Y \sin \varepsilon_X \sin \varepsilon_Z & -\sin \varepsilon_Y \sin \varepsilon_Z+\cos \varepsilon_Y \sin \varepsilon_X \cos \varepsilon_Z & \cos \varepsilon_Y \cos \varepsilon_X\end{array}\right]\end{aligned}\]
习惯上称\(R\)为旋转矩阵,\([\Delta X,\Delta Y,\Delta Z]^T\)为平移矩阵。只要求出\(\Delta X\)、\(\Delta Y\) 、\(\Delta Z\),\(\varepsilon_X\)、\(\varepsilon_Y\)、\(\varepsilon_Z\),这7个转换参数,或者直接求出旋转矩阵和平移矩阵,就可以实现两个坐标系间的转换。
2.2 计算技巧-重心矩阵
为计算方便,对所用到的坐标进行重心化处理。将两个坐标系的公共点的坐标均化算为以重心为原点的重心化坐标。分别记为\((\bar{X}, \bar{Y}, \bar{Z})\)和\(\left(\bar{X}^{\prime}, \bar{Y}^{\prime}, \bar{Z}^{\prime}\right)\)两个坐标系的重心的坐标分别为\((X_g, Y_g, Z_g)\)和\((X’_g, Y’_g, Z’_g)\)。
\[\left\{\begin{array}{l}X_k=\frac{\sum_{i=1}^n X_i}{n}, Y_k=\frac{\sum_{i=1}^n Y_i}{n}, Z_k=\frac{\sum_{i=1}^n Z_i}{n} \\X_k^{\prime}=\frac{\sum_{i=1}^n X_i^{\prime}}{n}, Y_k^{\prime}=\frac{\sum_{i=1}^n Y_i^{\prime}}{n}, Z_k^{\prime}=\frac{\sum_{i=1}^n Z_i^{\prime}}{n} \\\bar{X}_i=X_i-X_k, \bar{Y}_i=Y_i-Y_k, \bar{Z}_i=Z_i-Z_k \\\bar{X}_i^{\prime}=X_i^{\prime}-X_k^{\prime}, \bar{Y}_i^{\prime}=Y_i^{\prime}-Y_k^{\prime}, \bar{Z}_i^{\prime}=Z_i^{\prime}-Z_k^{\prime}\end{array}\right.\]
因此,可以将式(1)变为:
\[\left[\begin{array}{l}\bar{X} \\\bar{Y} \\\bar{Z}\end{array}\right]=\lambda R\left[\begin{array}{l}\bar{X}^{\prime} \\\bar{Y}^{\prime} \\\bar{Z}^{\prime}\end{array}\right] \tag{2}\]\[\left[\begin{array}{l}\Delta X \\\Delta Y \\\Delta Z\end{array}\right]=\left[\begin{array}{l}X_g \\Y_g \\Z_g\end{array}\right]-\lambda R\left[\begin{array}{l}X_g^{\prime} \\Y_g^{\prime} \\Z_g^{\prime}\end{array}\right] \tag{3}\]
因而,转换参数可分两步来求解。先用式(2)求出旋转参数和比例因子,再用式(,3)求出平移参数。
2.3 基于罗德里格斯矩阵的转换方法
对式(2)两边取2-范数,由于\(\lambda > 0\),旋转矩阵为正交阵的特性,可得:
\[\Vert [\bar{X}, \bar{Y}, \bar{Z}]^T \Vert = \lambda \Vert [\bar{X’}, \bar{Y’}, \bar{Z’}]^T \Vert \tag{4}\]
对于n个公共点,可得\(\lambda\)的最小均方估计:
\[\lambda=\frac{\sum_{i=1}^n\left(\left\|\left[\bar{X}_i \bar{Y}_i \bar{Z}_i\right]^{\mathrm{T}}\right\| \cdot\left\|\left[\bar{X}_i^{\prime} \bar{Y}_i^{\prime} \bar{Z}_i^{\prime}\right]^{\mathrm{T}}\right\|\right)}{\sum_i^n\left(\left\|\left[\bar{X}_{\prime}^{\prime} \bar{Y}_i^{\prime} \bar{Z}_i^{\prime}\right]^{\mathrm{T}}\right\|\right)^2}\]
得到比例因子的最小均方估计后,可将旋转矩阵 \(R\) 表示为:
\[R=(I-S)^{-1} (I+S) \tag{5}\]
其中,\(I\)为单位矩阵,\(S\)为反对称矩阵。将式(5)带入式(3),可得:
\[\left[\begin{array}{c}\bar{X}-\lambda \bar{X}^{\prime} \\\bar{Y}-\lambda \bar{Y}^{\prime} \\\bar{Z}-\lambda \bar{Z}^{\prime}\end{array}\right]=\left[\begin{array}{ccc}0 & -\left(\bar{Z}+\lambda \bar{Z}^{\prime}\right) & -\left(\bar{Y}+\lambda \bar{Y}^{\prime}\right) \\-\left(\bar{Z}+\lambda \bar{Z}^{\prime}\right) & 0 & \bar{X}+\lambda \bar{X}^{\prime} \\\bar{Y}+\lambda \bar{Y}^{\prime} & \bar{X}+\lambda \bar{X}^{\prime} & 0\end{array}\right]\left[\begin{array}{l}a \\b \\c\end{array}\right] \tag{6}\]3. C#代码实现
矩阵运算使用MathNet.Numerics库,初始化字段MatrixBuilder mb = Matrix.Build
和VectorBuilder vb = Vector.Build
3.1 计算矩阵重心坐标
Vector BarycentricCoord(Matrix coordinate){ Vector barycentric = vb.Dense(3, 1); int lenCoord = coordinate.ColumnCount; if (lenCoord > 2) barycentric = coordinate.RowSums(); barycentric /= lenCoord; return barycentric;}
3.2 计算比例因子
取2-范数使用点乘函数PointwisePower(2.0)
:
double ScaleFactor(Matrix sourceCoord, Matrix targetCoord){ double k = 0; double s1 = 0; double s2 = 0; Vector sourceColL2Norm = sourceCoord.PointwisePower(2.0).ColumnSums(); Vector targetColL2Norm = targetCoord.PointwisePower(2.0).ColumnSums(); int lenSourceCoord = sourceCoord.ColumnCount; int lenTargetCoord = targetCoord.ColumnCount; //只有在目标矩阵和源矩阵大小一致时,才能计算 if (lenSourceCoord == lenTargetCoord) { s1 = sourceColL2Norm.PointwiseSqrt().PointwiseMultiply(targetColL2Norm.PointwiseSqrt()).Sum(); s2 = sourceColL2Norm.Sum(); } k = s1 / s2; return k;}
3.3 计算罗德里格参数
这里的罗德里格参数就是式(6)中的\([a, b, c]^T\)。
Vector RoderickParas(double scalceFactor, Matrix sourceCoord, Matrix targetCoord){ Vector roderick = vb.Dense(new double[] { 0, 0, 0 }); int lenData = sourceCoord.ColumnCount; //常系数矩阵 var lConstant = vb.Dense(new double[3 * lenData]); //系数矩阵 var coefficient = mb.DenseOfArray(new double[3 * lenData, 3]); //构造相应矩阵 for (int i = 0; i < lenData; i++) { lConstant[3 * i] = targetCoord[0, i] - scalceFactor * sourceCoord[0, i]; lConstant[3 * i + 1] = targetCoord[1, i] - scalceFactor * sourceCoord[1, i]; lConstant[3 * i + 2] = targetCoord[2, i] - scalceFactor * sourceCoord[2, i]; coefficient[3 * i, 0] = 0; coefficient[3 * i, 1] = -(targetCoord[2, i] + scalceFactor * sourceCoord[2, i]); coefficient[3 * i, 2] = -(targetCoord[1, i] + scalceFactor * sourceCoord[1, i]); coefficient[3 * i + 1, 0] = -(targetCoord[2, i] + scalceFactor * sourceCoord[2, i]); coefficient[3 * i + 1, 1] = 0; coefficient[3 * i + 1, 2] = targetCoord[0, i] + scalceFactor * sourceCoord[0, i]; coefficient[3 * i + 2, 0] = targetCoord[1, i] + scalceFactor * sourceCoord[1, i]; coefficient[3 * i + 2, 1] = targetCoord[0, i] + scalceFactor * sourceCoord[0, i]; coefficient[3 * i + 2, 2] = 0; } roderick = coefficient.TransposeThisAndMultiply(coefficient).Inverse() * coefficient.Transpose() * lConstant; return roderick;}
3.4 解析罗德里格矩阵
此处,就是式(5)的实现。
/// /// 解析罗德里格矩阵为旋转矩阵和平移矩阵/// /// 比例因子/// 罗德里格矩阵/// 原坐标系坐标/// 目标坐标系坐标/// (Matrix, Vector) RotationMatrix(double scaleFactor, Vector roderick, Vector coreSourceCoord, Vector coreTargetCoord){ Matrix rotation = mb.DenseOfArray(new double[,] { {0,0,0 }, {0,0,0 }, {0,0,0 } }); //反对称矩阵 Matrix antisymmetric = mb.DenseOfArray(new double[,] { { 0, -roderick[2], -roderick[1] }, {roderick[2], 0, -roderick[0] }, {roderick[1], roderick[0], 0 } }); // 创建单位矩阵 // 然后与式(5)的 S 执行 + 和 - 操作 rotation = (DenseMatrix.CreateIdentity(3) - antisymmetric).Inverse() * (DenseMatrix.CreateIdentity(3) + antisymmetric); translation = coreTargetCoord - scaleFactor * rotation * coreSourceCoord; return (rotation, translation);}
3.5 调用逻辑
// 1. 字段值准备MatrixBuilder mb = Matrix.Build;VectorBuilder vb = Vector.Build;// 2. 写入源坐标系的坐标。注意这里的x,y,z输入顺序Matrix source = mb.DenseOfArray(new double[,]{ {-17.968, -12.829, 11.058 }, {-0.019 , 7.117, 11.001 }, {0.019 , -7.117, 10.981 }}).Transpose();// 3. 写入目标坐标系的坐标Matrix target = mb.DenseOfArray(new double[,]{ { 3392088.646,504140.985,17.958 }, { 3392089.517,504167.820,17.775 }, { 3392098.729,504156.945,17.751 }}).Transpose();// 4. 重心化var coreSource = BarycentricCoord(source);var coreTarget = BarycentricCoord(target);var sourceCoords = source - mb.DenseOfColumnVectors(coreSource, coreSource, coreSource);var targetCoords = target - mb.DenseOfColumnVectors(coreTarget, coreTarget, coreTarget);// 5. 求比例因子double k = ScaleFactor(sourceCoords, targetCoords);// 6. 解算咯德里格参数var roderick = RoderickParas(k, sourceCoords, targetCoords);// 7. 旋转(Matrix ro, Vector tran) = RotationMatrix(k, roderick, coreSource, coreTarget);Console.WriteLine("比例因子为:");Console.WriteLine(k);Console.WriteLine("旋转矩阵为:");Console.WriteLine(ro.ToString());Console.WriteLine("平移参数为:");Console.WriteLine(tran.ToString());Console.WriteLine("计算结果为:");Console.WriteLine(source2.ToString());
4. 总结
基于罗德里格矩阵的转换方法,在求解两个坐标系间的转换参数,特别是旋转角较大时,实现简单、快速。
朱华统,杨元喜,吕志平.GPS坐标系统的变换[M].北京:测绘出版社,1994. ↩︎
詹银虎,郑勇,骆亚波,等.无需初值及迭代的天文导航新算法0﹒测绘科学技术学报,2015,32(5):445-449. ↩︎
作者:Aidan出处:http://www.cnblogs.com/AidanLee/
——————————————-
个性签名:独学而无友,则孤陋而寡闻。做一个灵魂有趣的人!
如果觉得这篇文章对你有小小的帮助的话,记得在右下角点个“推荐”哦,博主在此感谢!
万水千山总是情,打赏一分行不行,所以如果你心情还比较高兴,也是可以扫码打赏博主,哈哈哈(っ•̀ω•́)っ✎⁾⁾!