苹果AppleMacOs最新Sonoma系统本地训练和推理GPT-SoVITS模型实践

图片[1] - 苹果AppleMacOs最新Sonoma系统本地训练和推理GPT-SoVITS模型实践 - MaxSSL

GPT-SoVITS是少有的可以在MacOs系统下训练和推理的TTS项目,虽然在效率上没有办法和N卡设备相提并论,但终归是开发者在MacOs系统构建基于M系列芯片AI生态的第一步。

苹果MacOs系统本地训练和推理GPT-SoVITS模型

环境搭建

首先要确保本地环境已经安装好版本大于6.1的FFMPEG软件:

(base) ➜~ ffmpeg -versionffmpeg version 6.1.1 Copyright (c) 2000-2023 the FFmpeg developersbuilt with Apple clang version 15.0.0 (clang-1500.1.0.2.5)configuration: --prefix=/opt/homebrew/Cellar/ffmpeg/6.1.1_3 --enable-shared --enable-pthreads --enable-version3 --cc=clang --host-cflags= --host-ldflags='-Wl,-ld_classic' --enable-ffplay --enable-gnutls --enable-gpl --enable-libaom --enable-libaribb24 --enable-libbluray --enable-libdav1d --enable-libharfbuzz --enable-libjxl --enable-libmp3lame --enable-libopus --enable-librav1e --enable-librist --enable-librubberband --enable-libsnappy --enable-libsrt --enable-libssh --enable-libsvtav1 --enable-libtesseract --enable-libtheora --enable-libvidstab --enable-libvmaf --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-lzma --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libopenvino --enable-libspeex --enable-libsoxr --enable-libzmq --enable-libzimg --disable-libjack --disable-indev=jack --enable-videotoolbox --enable-audiotoolbox --enable-neonlibavutil58. 29.100 / 58. 29.100libavcodec 60. 31.102 / 60. 31.102libavformat60. 16.100 / 60. 16.100libavdevice60.3.100 / 60.3.100libavfilter 9. 12.100 /9. 12.100libswscale7.5.100 /7.5.100libswresample 4. 12.100 /4. 12.100libpostproc57.3.100 / 57.3.100

如果没有安装,可以先升级HomeBrew,随后通过brew命令来安装FFMPEG:

brew cleanup && brew update

安装ffmpeg

brew install ffmpeg

随后需要确保本地已经安装好了conda环境:

(base) ➜~ conda info active environment : baseactive env location : /Users/liuyue/anaconda3shell level : 1 user config file : /Users/liuyue/.condarc populated config files : /Users/liuyue/.condarcconda version : 23.7.4conda-build version : 3.26.1 python version : 3.11.5.final.0 virtual packages : __archspec=1=arm64__osx=14.3=0__unix=0=0 base environment : /Users/liuyue/anaconda3(writable)conda av data dir : /Users/liuyue/anaconda3/etc/condaconda av metadata url : None channel URLs : https://repo.anaconda.com/pkgs/main/osx-arm64https://repo.anaconda.com/pkgs/main/noarchhttps://repo.anaconda.com/pkgs/r/osx-arm64https://repo.anaconda.com/pkgs/r/noarchpackage cache : /Users/liuyue/anaconda3/pkgs/Users/liuyue/.conda/pkgs envs directories : /Users/liuyue/anaconda3/envs/Users/liuyue/.conda/envs platform : osx-arm64 user-agent : conda/23.7.4 requests/2.31.0 CPython/3.11.5 Darwin/23.3.0 OSX/14.3 aau/0.4.2 s/XQcGHFltC5oP5DK5UVaTDA e/E37crlCLfv4OPFn-Q0QPJwUID:GID : 502:20 netrc file : None offline mode : False

如果没有安装过conda,推荐去anaconda官网下载安装包:

https://www.anaconda.com

接着通过conda命令创建并激活基于3.9的Python开发虚拟环境:

conda create -n GPTSoVits python=3.9conda activate GPTSoVits

安装依赖以及Mac版本的Torch

克隆GPT-SoVits项目:

https://github.com/RVC-Boss/GPT-SoVITS.git

进入项目:

cd GPT-SoVITS

安装基础依赖:

pip3 install -r requirements.txt

安装基于Mac的Pytorch:

pip3 install --pre torch torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu

随后检查一下mps是否可用:

(base) ➜~ conda activate GPTSoVits(GPTSoVits) ➜~ pythonPython 3.9.18 (main, Sep 11 2023, 08:25:10) [Clang 14.0.6 ] :: Anaconda, Inc. on darwinType "help", "copyright", "credits" or "license" for more information.>>> import torch>>> torch.backends.mps.is_available() True>>>

如果没有问题,那么直接在项目目录运行命令进入webui即可:

python3 webui.py

到底用CPU还是用MPS

在推理环节上,有个细节非常值得玩味,那就是,到底是MPS效率更高,还是直接用CPU效率更高,理论上当然是MPS了,但其实未必,我们可以修改项目中的config.py文件来强行指定api推理设备:

if torch.cuda.is_available():infer_device = "cuda"elif torch.backends.mps.is_available():infer_device = "mps"else:infer_device = "cpu"

或者修改inference_webui.py文件来指定页面推理设备:

if torch.cuda.is_available():device = "cuda"elif torch.backends.mps.is_available():device = "mps"else:device = "cpu"

基于cpu的推理效率:

图片[2] - 苹果AppleMacOs最新Sonoma系统本地训练和推理GPT-SoVITS模型实践 - MaxSSL

CPU推理时Python全程内存占用3GB,内存曲线全程绿色,推理速度长时间保持55it/s。

作为对比,使用MPS进行推理,GPU推理时,Python进程内存占用持续稳步上升至14GB,推理速度最高30it/s,偶发1-2it/s。

但实际上,在Pytorch官方的帖子中:

https://github.com/pytorch/pytorch/issues/111517

提到了解决方案,即修改cmakes的编译方式。

修改后推理对比:

cpu推理:['zh'] 19%|███████▍| 280/1500 [00:12 382] 19%|███████▍| 280/1500 [00:12<00:56, 21.54it/s]gpu推理: 21%|████████▌ | 322/1500 [00:08 426] 22%|████████▋ | 324/1500 [00:08<00:29, 39.26it/s]

但MPS方式确实有内存泄露的现象。

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享