时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测

目录

    • 时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果






基本介绍

1.MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测(风电功率预测);
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,单变量时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、MSE、RMSE、RPD多指标评价;

模型描述

CNN-GRU-AdaBoost是一种将CNN-GRU和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。CNN-GRU-AdaBoost算法的基本思想是将CNN-GRU作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个CNN-LSTM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式资源出下载MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测 。
% 训练集和测试集划分outdim = 1;% 最后一列为输出num_size = 0.7;% 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;% 输入特征维度P_train = res(1: num_train_s, 1: f_)';T_train = res(1: num_train_s, f_ + 1: end)';M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';T_test = res(num_train_s + 1: end, f_ + 1: end)';N = size(P_test, 2);%数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);t_test = mapminmax('apply', T_test, ps_output);options0 = trainingOptions('adam', ... % 优化算法Adam'MaxEpochs', 100, ...% 最大训练次数'GradientThreshold', 1, ... % 梯度阈值'InitialLearnRate', 0.01, ... % 初始学习率'LearnRateSchedule', 'piecewise', ... % 学习率调整'LearnRateDropPeriod',70, ... % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ...% 学习率调整因子'L2Regularization', 0.001, ... % 正则化参数'ExecutionEnvironment', 'cpu',... % 训练环境'Verbose', 1, ... % 关闭优化过程'Plots', 'none');% 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501