【Python&RS】Rasterio库安装+基础函数使用教程

Rasterio是一个Python库,专门用于栅格数据的读写操作。它支持多种栅格数据格式,如GeoTIFF、ENVI和HDF5,为处理和分析栅格数据提供了强大的工具。RasterIO适用于各种栅格数据应用,如卫星遥感、地图制作等。通过RasterIO,用户可以方便地读取、写入和操作栅格数据,提高数据处理效率。此外,RasterIO还支持自定义栅格数据类型和变换操作,具有很高的灵活性和可扩展性。总的来说,RasterIO是一个功能强大、易用的栅格数据处理库,对于遥感、地理信息系统等领域的数据处理和分析具有重要意义。

1 Rasterio库安装

Rasterio依赖于pyproj、Shapely、GDAL、Fiona、geopandas、rasterio等库,如果你之前安装过GDAL就大可不必担心,因为GDAL的使用包揽了这些库。如果没有我建议直接安装rasterio库,然后报错什么库就安装什么库。注意自己的Python版本号!!!下载地址:Rasterio库

图片[1] - 【Python&RS】Rasterio库安装+基础函数使用教程 - MaxSSL

2 导入常用函数

这些都是我后面代码需要使用到的函数,注意要导入,别到时候报错。

import osimport rasteriofrom rasterio.plot import showfrom rasterio.windows import Window

3 基础操作代码展示

3.1 获取影像基本信息

def Get_data(filepath):ds = rasterio.open(filepath)# 打开文件ds_bands = ds.count# 波段数ds_width = ds.width# 宽度ds_height = ds.height# 高度ds_bounds = ds.bounds# 四至范围ds_geo = ds.transform# 仿射地理变换参数ds_prj = ds.crs# 投影坐标系# print(ds.crs.wkt)# ds.nodatavals# 缺失值# ds.dirver# 数据格式print("影像的宽度为:" + str(ds_width))print("影像的高度为:" + str(ds_height))print("仿射地理变换参数为:" + str(ds_geo))print("投影坐标系为:" + str(ds_prj))

3.2 读写数据

这里的读写其实都和GDAL库差不多。读取的话都是读成数组,然后可以选择波段和读取范围;保存时都是选择波段数、仿射地理变换参数和投影信息。

def Read_Write_data(filepath):ds = rasterio.open(filepath)bands = ds.read()# 以数组的形式读取所有波段band1 = ds.read(1, window=Window(0, 0, 512, 256))# 以数组的形式打开波段1读取512*256new_dataset = rasterio.open('/tmp/new.tif','w',driver='GTiff',height=band1.shape[0],width=band1.shape[1],count=1,dtype=band1.dtype,crs='+proj=latlong',# ds.crstransform=ds.transform,)new_dataset.write(band1, 1)# 将band1的值写入new_dataset的第一个波段

3.3 可视化影像

这里是Rasterio自己集成了一个显示函数,不用我们自己再去使用matplotlib库绘制影像了。我这里就展示了一种用法,官方给了好几个demo,大家有兴趣可以自己去看。

def Show_data(filepath):ds = rasterio.open(filepath)show(ds, transform=ds.transform)

3.4 计算NDVI

这里给大家介绍一个经典案例,就是NDVI的计算。通过这个应该很容易就能理解Rasterio库的数据结构了。

def Get_NDVI(filepath):ds = rasterio.open(filepath)red = ds.read(4).astype('float64')nir_red = ds.read(5).astype('float64')ndvi = (nir_red - red) / (nir_red + red)new_dataset = rasterio.open('ndvi.tif','w',driver='GTiff',height=ds.height,width=ds.width,count=1,dtype='float64',crs=ds.crs,transform=ds.transform)new_dataset.write(ndvi, 1)new_dataset.close()

4 完整代码

# -*- coding: utf-8 -*-"""@Time : 2023/10/19 11:20@Auth : RS迷途小书童@File :Rasterio Functions.py@IDE :PyCharm@Purpose:rasterio库常用操作"""import osimport rasteriofrom rasterio.plot import showfrom rasterio.windows import Windowdef Get_data(filepath):ds = rasterio.open(filepath)# 打开文件ds_bands = ds.count# 波段数ds_width = ds.width# 宽度ds_height = ds.height# 高度ds_bounds = ds.bounds# 四至范围ds_geo = ds.transform# 仿射地理变换参数ds_prj = ds.crs# 投影坐标系# print(ds.crs.wkt)# ds.nodatavals# 缺失值# ds.dirver# 数据格式print("影像的宽度为:" + str(ds_width))print("影像的高度为:" + str(ds_height))print("仿射地理变换参数为:" + str(ds_geo))print("投影坐标系为:" + str(ds_prj))def Read_Write_data(filepath):ds = rasterio.open(filepath)bands = ds.read()# 以数组的形式读取所有波段band1 = ds.read(1, window=Window(0, 0, 512, 256))# 以数组的形式打开波段1读取512*256new_dataset = rasterio.open('/tmp/new.tif','w',driver='GTiff',height=band1.shape[0],width=band1.shape[1],count=1,dtype=band1.dtype,crs='+proj=latlong',# ds.crstransform=ds.transform,)new_dataset.write(band1, 1)# 将band1的值写入new_dataset的第一个波段def Show_data(filepath):ds = rasterio.open(filepath)show(ds, transform=ds.transform)def Get_NDVI(filepath):ds = rasterio.open(filepath)red = ds.read(4).astype('float64')nir_red = ds.read(5).astype('float64')ndvi = (nir_red - red) / (nir_red + red)new_dataset = rasterio.open('ndvi.tif','w',driver='GTiff',height=ds.height,width=ds.width,count=1,dtype='float64',crs=ds.crs,transform=ds.transform)new_dataset.write(ndvi, 1)new_dataset.close()if __name__ == "__main__":filepath1 = r'B:\Personal\Rasterio_try/46_22.tif'

总结来说,Rasterio库是一个很好的二次封装的库,可以更方便快捷地处理遥感栅格数据。但我个人使用GDAL习惯了,所以不怎么用Rasterio库,如果大家刚开始学习使用Python去处理地理空间数据,那么Rasterio库是一个很好的推荐。

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享