C2f模块的代码在YOLOv8上可以找到
class C2f(nn.Module):"""CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):# ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()self.c = int(c2 * e)# hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)# optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):"""Forward pass of a YOLOv5 CSPDarknet backbone layer."""y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):"""Applies spatial attention to module's input."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))
里面包含Bottleneck
class Bottleneck(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):# ch_in, ch_out, shortcut, groups, kernels, expandsuper().__init__()c_ = int(c2 * e)# hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):"""'forward()' applies the YOLOv5 FPN to input data."""return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
chunk(2,1)是指在维度1上将特征图分成2块
啥也不说了,都在图里
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END