五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码)

导读

本文主要介绍如何使用OpenCV和PaddleHub实现一个实时人脸口罩检测系统。(公众号:OpenCV与AI深度学习)

背景介绍

    从19年疫情爆发到现在,佩戴口罩对大家来说已是常态。应运而生的就有了很多相关应用,如病毒发展预测、口罩佩戴检测以及戴口罩的人脸识别等。

    今天介绍的人脸口罩佩戴检测系统主要使用OpenCV和百度飞浆(PaddlePaddle)的PaddleHub提供的检测模型。PaddleHub提供了很多实用的模型,包括图像处理、文字处理、音频处理、视频处理和工业应用等。github地址:https://github.com/PaddlePaddle/PaddleHub

图片[1] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

人脸口罩检测

    人脸检测部分的模型如下:

图片[2] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

    红框内的两个模型支持人脸口罩检测,这里选择pyramidbox_lite_server_mask,实现详细步骤:

【1】安装PaddlePaddle、PaddleHub和OpenCV(opencv-python)

pip install paddlepaddle -i https://pypi.tuna.tsinghua.edu.cn/simple--trusted-host https://pypi.tuna.tsinghua.edu.cn
pip install paddlehub -i https://pypi.tuna.tsinghua.edu.cn/simple--trusted-host https://pypi.tuna.tsinghua.edu.cn
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple--trusted-host https://pypi.tuna.tsinghua.edu.cn

    本文使用的版本:

    PaddlePaddle—2.3.0

    PaddleHun—2.2.0

    opencv-python—4.6.0.66

    注意:安装PaddlePaddle可能会遇到一些问题,导致import paddle失败,大家根据报错信息搜索解决方法即可。

【2】图片人脸口罩检测

    准备待测图,运行下面代码,修改图片路径即可:

import paddlehub as hubimport cv2mask_detector = hub.Module(name="pyramidbox_lite_server_mask")img_path = './imgs/A0.png'img = cv2.imread(img_path)input_dict = {"data": [img]}result = mask_detector.face_detection(data=input_dict)count = len(result[0]['data'])if count < 1:print('There is no face detected!')else:for i in range(0,count):#print(result[0]['data'][i])label = result[0]['data'][i].get('label')score = float(result[0]['data'][i].get('confidence'))x1 = int(result[0]['data'][i].get('left'))y1 = int(result[0]['data'][i].get('top'))x2 = int(result[0]['data'][i].get('right'))y2 = int(result[0]['data'][i].get('bottom'))cv2.rectangle(img,(x1,y1),(x2,y2),(255,200,0),2)if label == 'NO MASK':cv2.putText(img,label,(x1,y1),0,0.8,(0,0,255),2)else:cv2.putText(img,label,(x1,y1),0,0.8,(0,255,0),2) cv2.imwrite('result.jpg',img)cv2.imshow('mask-detection', img)cv2.waitKey()cv2.destroyAllWindows()print('Done!')

 

 代码开始第一次会先下载对应的模型到如下位置:

    C:\Users\xxx\.paddlehub\modules,以后不用再下载

图片[3] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

测试图1:

图片[4] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

运行结果:

图片[5] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

测试图2:

图片[6] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

运行结果:

图片[7] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

测试图3:

图片[8] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

运行结果:

图片[9] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

测试图4:

图片[10] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

运行结果:

图片[11] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

    从上面测试结果来看,效果还不错!

【3】视频或摄像头实时人脸口罩检测

    准备测试视频或直接打开摄像头检测,选择对应的代码即可:

cap = cv2.VideoCapture('2.mp4') #视频文件检测# cap = cv2.VideoCapture(0) #摄像头检测

 完整代码:

import paddlehub as hubimport cv2mask_detector = hub.Module(name="pyramidbox_lite_server_mask")def mask_detecion(img):input_dict = {"data": [img]}result = mask_detector.face_detection(data=input_dict) count = len(result[0]['data'])if count < 1:#print('There is no face detected!')passelse:for i in range(0,count):#print(result[0]['data'][i])label = result[0]['data'][i].get('label')score = float(result[0]['data'][i].get('confidence'))x1 = int(result[0]['data'][i].get('left'))y1 = int(result[0]['data'][i].get('top'))x2 = int(result[0]['data'][i].get('right'))y2 = int(result[0]['data'][i].get('bottom'))cv2.rectangle(img,(x1,y1),(x2,y2),(255,200,0),2)if label == 'NO MASK':cv2.putText(img,label,(x1,y1),0,0.8,(0,0,255),2)else:cv2.putText(img,label,(x1,y1),0,0.8,(0,255,0),2)return imgif __name__ == '__main__':cap = cv2.VideoCapture('2.mp4') #视频文件检测#cap = cv2.VideoCapture(0) #摄像头检测if(cap.isOpened()): #视频打开成功while(True):ret,frame = cap.read()#读取一帧result = mask_detecion(frame)cv2.imshow('mask_detection',result)if cv2.waitKey(1)&0xFF ==27: #按下Esc键退出breakelse:print ('open video/camera failed!')cap.release()cv2.destroyAllWindows()

   测试结果:

图片[12] - 五分钟快速搭建一个实时人脸口罩检测系统(OpenCV+PaddleHub 含源码) - MaxSSL

下载1:Pytoch常用函数手册

在「OpenCV与AI深度」号后台回复:Pytorch函数手册能够学习下载全网第一份Pytorch函数常用手册,包括Tensors介绍、基础函数介绍、数据处理函数、优化函数、CUDA编程、多处理等十四章内容。

下载2:145个OpenCV实例应用代码

在「OpenCV与AI深入」公众号后台回复:OpenCV145能够学习下载145个OpenCV实例应用代码(Python和C++双语言实现)。

 

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享