Sharding-JDBC(六)5.1.0版本,实现按月分表、自动建表、自动刷新节点

目录

    • 1.Maven 依赖
    • 2.创建表结构
    • 3.yml 配置
    • 4.TimeShardingAlgorithm.java 分片算法类
    • 5.ShardingAlgorithmTool.java 分片工具类
    • 6.ShardingTablesLoadRunner.java 初始化缓存类
    • 7.SpringUtil.java Spring工具类
    • 8.源码测试
    • 9.测试结果
    • 10.代码地址

图片[1] - Sharding-JDBC(六)5.1.0版本,实现按月分表、自动建表、自动刷新节点 - MaxSSL

  • 官网地址: https://shardingsphere.apache.org/
  • GitHub: https://github.com/apache/shardingsphere
  • 官方示例:https://github.com/apache/shardingsphere/tree/master/examples
  • 中文社区: https://community.sphere-ex.com/
  • 5.1.0 官方文档: https://shardingsphere.apache.org/document/5.1.0/cn/overview/

背景: 项目用户数据库表量太大,对数据按月分表,需要满足如下需求:

  1. 将数据库按月分表;
  2. 自动建表;
  3. 数据自动跨表查询。

ShardingJDBC 4 升到 5 过后还是解决了许多问题,4版本的分页、跨库和子查询问题都解决来了,性能也提高了。

1.Maven 依赖

<dependency><groupId>org.apache.shardingsphere</groupId><artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId><version>5.1.0</version></dependency><dependency><groupId>org.apache.tomcat</groupId><artifactId>tomcat-dbcp</artifactId><version>10.0.16</version></dependency><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>${mybatisplus.version}</version></dependency><dependency><groupId>com.github.pagehelper</groupId><artifactId>pagehelper-spring-boot-starter</artifactId><version>1.3.0</version></dependency>

2.创建表结构

-- -------------------------------- 用户表-- ------------------------------CREATE TABLE `t_user` (`id` bigint(16) NOT NULL COMMENT '主键',`username` varchar(64) NOT NULL COMMENT '用户名',`password` varchar(64) NOT NULL COMMENT '密码',`age` int(8) NOT NULL COMMENT '年龄',`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户表';-- -------------------------------- 用户表202201-- ------------------------------CREATE TABLE `t_user_202201` (`id` bigint(16) NOT NULL COMMENT '主键',`username` varchar(64) NOT NULL COMMENT '用户名',`password` varchar(64) NOT NULL COMMENT '密码',`age` int(8) NOT NULL COMMENT '年龄',`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户表202201';

3.yml 配置

server:port: 8081spring:### 处理连接池冲突 #####main:allow-bean-definition-overriding: trueshardingsphere:# 是否启用 Shardingenabled: true# 打印sql#props:#sql-show: truedatasource:names: mydbmydb:type: com.alibaba.druid.pool.DruidDataSourceurl: jdbc:mysql://localhost:3306/mydb" />&characterEncoding=UTF-8&serverTimezone=Asia/Shanghaidriver-class-name: com.mysql.cj.jdbc.Driverusername: rootpassword: root# 数据源其他配置initialSize: 5minIdle: 5maxActive: 20maxWait: 60000timeBetweenEvictionRunsMillis: 60000minEvictableIdleTimeMillis: 300000validationQuery: SELECT 1 FROM DUALtestWhileIdle: truetestOnBorrow: falsetestOnReturn: falsepoolPreparedStatements: true# 配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙#filters: stat,wall,log4jmaxPoolPreparedStatementPerConnectionSize: 20useGlobalDataSourceStat: trueconnectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=500rules:sharding:# 表策略配置tables:# t_user 是逻辑表t_user:# 配置数据节点,这里是按月分表# 示例1:时间范围设置在202201 ~ 210012# actualDataNodes: mydb.t_user_$->{2022..2100}0$->{1..9},mydb.t_user_$->{2022..2100}1$->{0..2}# 示例2:时间范围设置在202201 ~ 202203actualDataNodes: mydb.t_usertableStrategy:# 使用标准分片策略standard:# 配置分片字段shardingColumn: create_time# 分片算法名称,不支持大写字母和下划线,否则启动就会报错shardingAlgorithmName: time-sharding-algorithm# 分片算法配置shardingAlgorithms:# 分片算法名称,不支持大写字母和下划线,否则启动就会报错time-sharding-algorithm:# 类型:自定义策略type: CLASS_BASEDprops:# 分片策略strategy: standard# 分片算法类algorithmClassName: com.demo.module.config.sharding.TimeShardingAlgorithm# mybatis-plusmybatis-plus:mapper-locations: classpath*:/mapper/*Mapper.xml# 实体扫描,多个package用逗号或者分号分隔typeAliasesPackage: cn.demo.project.*.entity# 测试环境打印sqlconfiguration:log-impl: org.apache.ibatis.logging.stdout.StdOutImplpagehelper:helperDialect: postgresql

4.TimeShardingAlgorithm.java 分片算法类

import com.demo.module.config.sharding.enums.ShardingTableCacheEnum;import com.google.common.collect.Range;import lombok.extern.slf4j.Slf4j;import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;import java.time.LocalDateTime;import java.time.format.DateTimeFormatter;import java.util.*;import java.util.function.Function;/** * 

@Title TimeShardingAlgorithm *

@Description 分片算法,按月分片 * * @author ACGkaka * @date 2022/12/20 11:33 */@Slf4jpublic class TimeShardingAlgorithm implements StandardShardingAlgorithm<LocalDateTime> {/** * 分片时间格式 */private static final DateTimeFormatter TABLE_SHARD_TIME_FORMATTER = DateTimeFormatter.ofPattern("yyyyMM");/** * 完整时间格式 */private static final DateTimeFormatter DATE_TIME_FORMATTER = DateTimeFormatter.ofPattern("yyyyMMdd HH:mm:ss");/** * 表分片符号,例:t_contract_202201 中,分片符号为 "_" */private final String TABLE_SPLIT_SYMBOL = "_";/** * 精准分片 * @param tableNames 对应分片库中所有分片表的集合 * @param preciseShardingValue 分片键值,其中 logicTableName 为逻辑表,columnName 分片键,value 为从 SQL 中解析出来的分片键的值 * @return 表名 */@Overridepublic String doSharding(Collection<String> tableNames, PreciseShardingValue<LocalDateTime> preciseShardingValue) {String logicTableName = preciseShardingValue.getLogicTableName();ShardingTableCacheEnum logicTable = ShardingTableCacheEnum.of(logicTableName);if (logicTable == null) {log.error(">>>>>>>>>> 【ERROR】数据表类型错误,请稍后重试,logicTableNames:{},logicTableName:{}",ShardingTableCacheEnum.logicTableNames(), logicTableName);throw new IllegalArgumentException("数据表类型错误,请稍后重试");}/// 打印分片信息log.info(">>>>>>>>>> 【INFO】精确分片,节点配置表名:{},数据库缓存表名:{}", tableNames, logicTable.resultTableNamesCache());LocalDateTime dateTime = preciseShardingValue.getValue();String resultTableName = logicTableName + "_" + dateTime.format(TABLE_SHARD_TIME_FORMATTER);// 检查分表获取的表名是否存在,不存在则自动建表if (!tableNames.contains(resultTableName)){tableNames.add(resultTableName);}return ShardingAlgorithmTool.getShardingTableAndCreate(logicTable, resultTableName);}/** * 范围分片 * @param tableNames 对应分片库中所有分片表的集合 * @param rangeShardingValue 分片范围 * @return 表名集合 */@Overridepublic Collection<String> doSharding(Collection<String> tableNames, RangeShardingValue<LocalDateTime> rangeShardingValue) {String logicTableName = rangeShardingValue.getLogicTableName();ShardingTableCacheEnum logicTable = ShardingTableCacheEnum.of(logicTableName);if (logicTable == null) {log.error(">>>>>>>>>> 【ERROR】逻辑表范围异常,请稍后重试,logicTableNames:{},logicTableName:{}",ShardingTableCacheEnum.logicTableNames(), logicTableName);throw new IllegalArgumentException("逻辑表范围异常,请稍后重试");}/// 打印分片信息log.info(">>>>>>>>>> 【INFO】范围分片,节点配置表名:{},数据库缓存表名:{}", tableNames, logicTable.resultTableNamesCache());// between and 的起始值Range<LocalDateTime> valueRange = rangeShardingValue.getValueRange();boolean hasLowerBound = valueRange.hasLowerBound();boolean hasUpperBound = valueRange.hasUpperBound();// 获取最大值和最小值Set<String> tableNameCache = logicTable.resultTableNamesCache();LocalDateTime min = hasLowerBound ? valueRange.lowerEndpoint() :getLowerEndpoint(tableNameCache);LocalDateTime max = hasUpperBound ? valueRange.upperEndpoint() :getUpperEndpoint(tableNameCache);// 循环计算分表范围Set<String> resultTableNames = new LinkedHashSet<>();while (min.isBefore(max) || min.equals(max)) {String tableName = logicTableName + TABLE_SPLIT_SYMBOL + min.format(TABLE_SHARD_TIME_FORMATTER);resultTableNames.add(tableName);min = min.plusMinutes(1);}return ShardingAlgorithmTool.getShardingTablesAndCreate(logicTable, resultTableNames);}@Overridepublic void init() {}@Overridepublic String getType() {return null;}// --------------------------------------------------------------------------------------------------------------// 私有方法// --------------------------------------------------------------------------------------------------------------/** * 获取 最小分片值 * @param tableNames 表名集合 * @return 最小分片值 */private LocalDateTime getLowerEndpoint(Collection<String> tableNames) {Optional<LocalDateTime> optional = tableNames.stream().map(o -> LocalDateTime.parse(o.replace(TABLE_SPLIT_SYMBOL, "") + "01 00:00:00", DATE_TIME_FORMATTER)).min(Comparator.comparing(Function.identity()));if (optional.isPresent()) {return optional.get();} else {log.error(">>>>>>>>>> 【ERROR】获取数据最小分表失败,请稍后重试,tableName:{}", tableNames);throw new IllegalArgumentException("获取数据最小分表失败,请稍后重试");}}/** * 获取 最大分片值 * @param tableNames 表名集合 * @return 最大分片值 */private LocalDateTime getUpperEndpoint(Collection<String> tableNames) {Optional<LocalDateTime> optional = tableNames.stream().map(o -> LocalDateTime.parse(o.replace(TABLE_SPLIT_SYMBOL, "") + "01 00:00:00", DATE_TIME_FORMATTER)).max(Comparator.comparing(Function.identity()));if (optional.isPresent()) {return optional.get();} else {log.error(">>>>>>>>>> 【ERROR】获取数据最大分表失败,请稍后重试,tableName:{}", tableNames);throw new IllegalArgumentException("获取数据最大分表失败,请稍后重试");}}}

5.ShardingAlgorithmTool.java 分片工具类

import com.alibaba.druid.util.StringUtils;import com.demo.module.config.sharding.enums.ShardingTableCacheEnum;import com.demo.module.utils.SpringUtil;import lombok.extern.slf4j.Slf4j;import org.apache.shardingsphere.driver.jdbc.core.datasource.ShardingSphereDataSource;import org.apache.shardingsphere.infra.config.RuleConfiguration;import org.apache.shardingsphere.mode.manager.ContextManager;import org.apache.shardingsphere.sharding.algorithm.config.AlgorithmProvidedShardingRuleConfiguration;import org.apache.shardingsphere.sharding.api.config.rule.ShardingTableRuleConfiguration;import org.apache.shardingsphere.sharding.rule.TableRule;import org.springframework.core.env.Environment;import javax.sql.DataSource;import java.lang.reflect.Field;import java.lang.reflect.Modifier;import java.sql.*;import java.time.YearMonth;import java.time.format.DateTimeFormatter;import java.util.*;import java.util.stream.Collectors;/** * 

@Title ShardingAlgorithmTool *

@Description 按月分片算法工具 * * @author ACGkaka * @date 2022/12/20 14:03 */@Slf4jpublic class ShardingAlgorithmTool {/** 表分片符号,例:t_user_202201 中,分片符号为 "_" */private static final String TABLE_SPLIT_SYMBOL = "_";/** 数据库配置 */private static final Environment ENV = SpringUtil.getApplicationContext().getEnvironment();private static final String DATASOURCE_URL = ENV.getProperty("spring.shardingsphere.datasource.mydb.url");private static final String DATASOURCE_USERNAME = ENV.getProperty("spring.shardingsphere.datasource.mydb.username");private static final String DATASOURCE_PASSWORD = ENV.getProperty("spring.shardingsphere.datasource.mydb.password");/** * 检查分表获取的表名是否存在,不存在则自动建表 * @param logicTable 逻辑表 * @param resultTableNames 真实表名,例:t_user_202201 * @return 存在于数据库中的真实表名集合 */public static Set<String> getShardingTablesAndCreate(ShardingTableCacheEnum logicTable, Collection<String> resultTableNames) {return resultTableNames.stream().map(o -> getShardingTableAndCreate(logicTable, o)).collect(Collectors.toSet());}/** * 检查分表获取的表名是否存在,不存在则自动建表 * @param logicTable 逻辑表 * @param resultTableName 真实表名,例:t_user_202201 * @return 确认存在于数据库中的真实表名 */public static String getShardingTableAndCreate(ShardingTableCacheEnum logicTable, String resultTableName) {// 缓存中有此表则返回,没有则判断创建if (logicTable.resultTableNamesCache().contains(resultTableName)) {return resultTableName;} else {// 未创建的表返回逻辑空表boolean isSuccess = createShardingTable(logicTable, resultTableName);return isSuccess ? resultTableName : logicTable.logicTableName();}}/** * 重载全部缓存 */public static void tableNameCacheReloadAll() {Arrays.stream(ShardingTableCacheEnum.values()).forEach(ShardingAlgorithmTool::tableNameCacheReload);}/** * 重载指定分表缓存 * @param logicTable 逻辑表,例:t_user */public static void tableNameCacheReload(ShardingTableCacheEnum logicTable) {// 读取数据库中所有表名List<String> tableNameList = getAllTableNameBySchema(logicTable);// 更新缓存、配置(原子操作)logicTable.atomicUpdateCacheAndActualDataNodes(tableNameList);// 删除旧的缓存(如果存在)logicTable.resultTableNamesCache().clear();// 写入新的缓存logicTable.resultTableNamesCache().addAll(tableNameList);// 动态更新配置 actualDataNodesactualDataNodesRefresh(logicTable.logicTableName(), tableNameList);}/** * 获取所有表名 * @return 表名集合 * @param logicTable 逻辑表 */public static List<String> getAllTableNameBySchema(ShardingTableCacheEnum logicTable) {List<String> tableNames = new ArrayList<>();if (StringUtils.isEmpty(DATASOURCE_URL) || StringUtils.isEmpty(DATASOURCE_USERNAME) || StringUtils.isEmpty(DATASOURCE_PASSWORD)) {log.error(">>>>>>>>>> 【ERROR】数据库连接配置有误,请稍后重试,URL:{}, username:{}, password:{}", DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD);throw new IllegalArgumentException("数据库连接配置有误,请稍后重试");}try (Connection conn = DriverManager.getConnection(DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD); Statement st = conn.createStatement()) {String logicTableName = logicTable.logicTableName();try (ResultSet rs = st.executeQuery("show TABLES like '" + logicTableName + TABLE_SPLIT_SYMBOL + "%'")) {while (rs.next()) {String tableName = rs.getString(1);// 匹配分表格式 例:^(t\_contract_\d{6})$if (tableName != null && tableName.matches(String.format("^(%s\\d{6})$", logicTableName + TABLE_SPLIT_SYMBOL))) {tableNames.add(rs.getString(1));}}}} catch (SQLException e) {log.error(">>>>>>>>>> 【ERROR】数据库连接失败,请稍后重试,原因:{}", e.getMessage(), e);throw new IllegalArgumentException("数据库连接失败,请稍后重试");}return tableNames;}/** * 动态更新配置 actualDataNodes * * @param logicTableName逻辑表名 * @param tableNamesCache 真实表名集合 */public static void actualDataNodesRefresh(String logicTableName, List<String> tableNamesCache){try {// 获取数据分片节点String dbName = "mydb";log.info(">>>>>>>>>> 【INFO】更新分表配置,logicTableName:{},tableNamesCache:{}", logicTableName, tableNamesCache);// generate actualDataNodesString newActualDataNodes = tableNamesCache.stream().map(o -> String.format("%s.%s", dbName, o)).collect(Collectors.joining(","));ShardingSphereDataSource shardingSphereDataSource = SpringUtil.getBean(ShardingSphereDataSource.class);updateShardRuleActualDataNodes(shardingSphereDataSource, logicTableName, newActualDataNodes);}catch (Exception e){log.error("初始化 动态表单失败,原因:{}", e.getMessage(), e);}}// --------------------------------------------------------------------------------------------------------------// 私有方法// --------------------------------------------------------------------------------------------------------------/** * 刷新ActualDataNodes */private static void updateShardRuleActualDataNodes(ShardingSphereDataSource dataSource, String logicTableName, String newActualDataNodes) {// Context manager.ContextManager contextManager = dataSource.getContextManager();// Rule configuration.String schemaName = "logic_db";Collection<RuleConfiguration> newRuleConfigList = new LinkedList<>();Collection<RuleConfiguration> oldRuleConfigList = dataSource.getContextManager().getMetaDataContexts().getMetaData(schemaName).getRuleMetaData().getConfigurations();for (RuleConfiguration oldRuleConfig : oldRuleConfigList) {if (oldRuleConfig instanceof AlgorithmProvidedShardingRuleConfiguration) {// Algorithm provided sharding rule configurationAlgorithmProvidedShardingRuleConfiguration oldAlgorithmConfig = (AlgorithmProvidedShardingRuleConfiguration) oldRuleConfig;AlgorithmProvidedShardingRuleConfiguration newAlgorithmConfig = new AlgorithmProvidedShardingRuleConfiguration();// Sharding table rule configuration CollectionCollection<ShardingTableRuleConfiguration> newTableRuleConfigList = new LinkedList<>();Collection<ShardingTableRuleConfiguration> oldTableRuleConfigList = oldAlgorithmConfig.getTables();oldTableRuleConfigList.forEach(oldTableRuleConfig -> {if (logicTableName.equals(oldTableRuleConfig.getLogicTable())) {ShardingTableRuleConfiguration newTableRuleConfig = new ShardingTableRuleConfiguration(oldTableRuleConfig.getLogicTable(), newActualDataNodes);newTableRuleConfig.setTableShardingStrategy(oldTableRuleConfig.getTableShardingStrategy());newTableRuleConfig.setDatabaseShardingStrategy(oldTableRuleConfig.getDatabaseShardingStrategy());newTableRuleConfig.setKeyGenerateStrategy(oldTableRuleConfig.getKeyGenerateStrategy());newTableRuleConfigList.add(newTableRuleConfig);} else {newTableRuleConfigList.add(oldTableRuleConfig);}});newAlgorithmConfig.setTables(newTableRuleConfigList);newAlgorithmConfig.setAutoTables(oldAlgorithmConfig.getAutoTables());newAlgorithmConfig.setBindingTableGroups(oldAlgorithmConfig.getBindingTableGroups());newAlgorithmConfig.setBroadcastTables(oldAlgorithmConfig.getBroadcastTables());newAlgorithmConfig.setDefaultDatabaseShardingStrategy(oldAlgorithmConfig.getDefaultDatabaseShardingStrategy());newAlgorithmConfig.setDefaultTableShardingStrategy(oldAlgorithmConfig.getDefaultTableShardingStrategy());newAlgorithmConfig.setDefaultKeyGenerateStrategy(oldAlgorithmConfig.getDefaultKeyGenerateStrategy());newAlgorithmConfig.setDefaultShardingColumn(oldAlgorithmConfig.getDefaultShardingColumn());newAlgorithmConfig.setShardingAlgorithms(oldAlgorithmConfig.getShardingAlgorithms());newAlgorithmConfig.setKeyGenerators(oldAlgorithmConfig.getKeyGenerators());newRuleConfigList.add(newAlgorithmConfig);}}// update contextcontextManager.alterRuleConfiguration(schemaName, newRuleConfigList);}/** * 创建分表 * @param logicTable 逻辑表 * @param resultTableName 真实表名,例:t_user_202201 * @return 创建结果(true创建成功,false未创建) */private static boolean createShardingTable(ShardingTableCacheEnum logicTable, String resultTableName) {// 根据日期判断,当前月份之后分表不提前创建String month = resultTableName.replace(logicTable.logicTableName() + TABLE_SPLIT_SYMBOL,"");YearMonth shardingMonth = YearMonth.parse(month, DateTimeFormatter.ofPattern("yyyyMM"));if (shardingMonth.isAfter(YearMonth.now())) {return false;}synchronized (logicTable.logicTableName().intern()) {// 缓存中有此表 返回if (logicTable.resultTableNamesCache().contains(resultTableName)) {return false;}// 缓存中无此表,则建表并添加缓存executeSql(Collections.singletonList("CREATE TABLE IF NOT EXISTS `" + resultTableName + "` LIKE `" + logicTable.logicTableName() + "`;"));// 缓存重载tableNameCacheReload(logicTable);}return true;}/** * 执行SQL * @param sqlList SQL集合 */private static void executeSql(List<String> sqlList) {if (StringUtils.isEmpty(DATASOURCE_URL) || StringUtils.isEmpty(DATASOURCE_USERNAME) || StringUtils.isEmpty(DATASOURCE_PASSWORD)) {log.error(">>>>>>>>>> 【ERROR】数据库连接配置有误,请稍后重试,URL:{}, username:{}, password:{}", DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD);throw new IllegalArgumentException("数据库连接配置有误,请稍后重试");}try (Connection conn = DriverManager.getConnection(DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD)) {try (Statement st = conn.createStatement()) {conn.setAutoCommit(false);for (String sql : sqlList) {st.execute(sql);}} catch (Exception e) {conn.rollback();log.error(">>>>>>>>>> 【ERROR】数据表创建执行失败,请稍后重试,原因:{}", e.getMessage(), e);throw new IllegalArgumentException("数据表创建执行失败,请稍后重试");}} catch (SQLException e) {log.error(">>>>>>>>>> 【ERROR】数据库连接失败,请稍后重试,原因:{}", e.getMessage(), e);throw new IllegalArgumentException("数据库连接失败,请稍后重试");}}}

6.ShardingTablesLoadRunner.java 初始化缓存类

import org.springframework.boot.CommandLineRunner;import org.springframework.core.annotation.Order;import org.springframework.stereotype.Component;/** * 

@Title ShardingTablesLoadRunner *

@Description 项目启动后,读取已有分表,进行缓存 * * @author ACGkaka * @date 2022/12/20 15:41 */@Order(value = 1) // 数字越小,越先执行@Componentpublic class ShardingTablesLoadRunner implements CommandLineRunner {@Overridepublic void run(String... args) {// 读取已有分表,进行缓存ShardingAlgorithmTool.tableNameCacheReloadAll();}}

7.SpringUtil.java Spring工具类

import org.springframework.beans.BeansException;import org.springframework.context.ApplicationContext;import org.springframework.context.ApplicationContextAware;import org.springframework.core.env.Environment;import org.springframework.stereotype.Component;/** * 

@Title SpringUtil *

@Description Spring工具类 * * @author ACGkaka * @date 2022/12/20 14:39 */@Componentpublic class SpringUtil implements ApplicationContextAware {private static ApplicationContext applicationContext = null;@Overridepublic void setApplicationContext(ApplicationContext applicationContext) throws BeansException {SpringUtil.applicationContext = applicationContext;}public static ApplicationContext getApplicationContext() {return SpringUtil.applicationContext;}public static <T> T getBean(Class<T> cla) {return applicationContext.getBean(cla);}public static <T> T getBean(String name, Class<T> cal) {return applicationContext.getBean(name, cal);}public static String getProperty(String key) {return applicationContext.getBean(Environment.class).getProperty(key);}}

8.源码测试

import com.demo.module.entity.User;import com.demo.module.service.UserService;import com.github.pagehelper.PageHelper;import com.github.pagehelper.PageInfo;import org.junit.jupiter.api.Test;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.boot.test.context.SpringBootTest;import java.time.LocalDateTime;import java.time.format.DateTimeFormatter;import java.util.ArrayList;import java.util.List;@SpringBootTestclass SpringbootDemoApplicationTests {private final DateTimeFormatter DATE_TIME_FORMATTER = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");@Autowiredprivate UserService userService;@Testvoid saveTest() {List<User> users = new ArrayList<>(3);LocalDateTime time1 = LocalDateTime.parse("2022-01-01 00:00:00", DATE_TIME_FORMATTER);LocalDateTime time2 = LocalDateTime.parse("2022-02-01 00:00:00", DATE_TIME_FORMATTER);users.add(new User("ACGkaka_1", "123456", 10, time1, time1));users.add(new User("ACGkaka_2", "123456", 11, time2, time2));userService.saveBatch(users);}@Testvoid listTest() {PageHelper.startPage(1, 1);List<User> users = userService.list();PageInfo<User> pageInfo = new PageInfo<>(users);System.out.println(">>>>>>>>>> 【Result】<<<<<<<<<< ");System.out.println(pageInfo);}}

9.测试结果

图片[2] - Sharding-JDBC(六)5.1.0版本,实现按月分表、自动建表、自动刷新节点 - MaxSSL

新增和查询可以正常分页查询,测试成功。

10.代码地址

地址: https://gitee.com/acgkaka/SpringBootExamples/tree/master/springboot-sharding-jdbc-month-5.1.0

参考地址:

1.SharDingJDBC-5.1.0按月水平分表+读写分离,自动创表、自动刷新节点表,https://blog.csdn.net/weixin_51216079/article/details/123873967

2.shardingjdbc 5.1 是否支持java 动态加载 数据节点,而不是在配置文件中用表达式定义好,https://community.sphere-ex.com/t/topic/1025

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享