目录
1. 下载数据集
2. 数据预处理
3. 模型训练与选择
4. 预测
1. 下载数据集
下载后数据如下:
FIFA World Cup | Kaggle
2. 数据预处理
reprocess_dataset() 方法是数据进行预处理。预处理过的数据如下:
save_dataset() 方法是对预处理过的数据,进行向量化。
完整代码如下:
import pandas as pdimport numpy as npfrom sklearn.feature_extraction import DictVectorizerimport joblibroot_path = "models"def reprocess_dataset(): #load data results = pd.read_csv('datasets/WorldCupMatches.csv', encoding='gbk') #Adding goal difference and establishing who is the winner winner = [] for i in range (len(results['Home Team Name'])): if results ['Home Team Goals'][i] > results['Away Team Goals'][i]: winner.append(results['Home Team Name'][i]) elif results['Home Team Goals'][i] < results ['Away Team Goals'][i]: winner.append(results['Away Team Name'][i]) else: winner.append('Draw') results['winning_team'] = winner #adding goal difference column results['goal_difference'] = np.absolute(results['Home Team Goals'] - results['Away Team Goals']) # narrowing to team patcipating in the world cup, totally there are 32 football teams in 2022 worldcup_teams = ['Qatar','Germany','Denmark', 'Brazil','France','Belgium', 'Serbia', 'Spain','Croatia', 'Switzerland', 'England','Netherlands', 'Argentina',' Iran', 'Korea Republic','Saudi Arabia', 'Japan', 'Uruguay','Ecuador','Canada', 'Senegal', 'Poland', 'Portugal','Tunisia', 'Morocco','Cameroon','USA', 'Mexico','Wales','Australia','Costa Rica', 'Ghana'] df_teams_home = results[results['Home Team Name'].isin(worldcup_teams)] df_teams_away = results[results['Away Team Name'].isin(worldcup_teams)] df_teams = pd.concat((df_teams_home, df_teams_away)) df_teams.drop_duplicates() df_teams.count() #dropping columns that wll not affect matchoutcomes df_teams_new =df_teams[[ 'Home Team Name','Away Team Name','winning_team']] print(df_teams_new.head() ) #Building the model #the prediction label: The winning_team column will show "2" if the home team has won, "1" if it was a tie, and "0" if the away team has won. df_teams_new = df_teams_new.reset_index(drop=True) df_teams_new.loc[df_teams_new.winning_team == df_teams_new['Home Team Name'],'winning_team']=2 df_teams_new.loc[df_teams_new.winning_team == 'Draw', 'winning_team']=1 df_teams_new.loc[df_teams_new.winning_team == df_teams_new['Away Team Name'], 'winning_team']=0 print(df_teams_new.count() ) df_teams_new.to_csv('datasets/raw_train_data.csv', encoding='gbk', index =False)def save_dataset(): df_teams_new = pd.read_csv('datasets/raw_train_data.csv', encoding='gbk') feature = df_teams_new[[ 'Home Team Name','Away Team Name']] vec = DictVectorizer(sparse=False) print(feature.to_dict(orient='records')) X =vec.fit_transform(feature.to_dict(orient='records')) X = X.astype('int') print("===") print(vec.get_feature_names()) print(vec.feature_names_) y = df_teams_new[[ 'winning_team']] y =y.astype('int') print(X.shape) print(y.shape) joblib.dump(vec, root_path+"/vec.joblib") np.savez('datasets/train_data', x= X, y = y)if __name__ == '__main__': reprocess_dataset() save_dataset();
3. 模型训练与选择
用不同的传统机器学习方法进行训练,训练后的模型比较
Model | Training Accuracy | Test Accuracy |
Logistic Regression | 67.40% | 61.60% |
SVM | 67.30% | 62.70% |
Naive Bayes | 65.50% | 63.80% |
Random Forest | 90.80% | 65.50% |
XGB | 75.30% | 62.00% |
可以看到随机森林模型在测试集上准确率最高,所以我们可以用它来做预测。
下面是完整训练代码:
import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsimport matplotlib.ticker as tickerimport matplotlib.ticker as pltickerfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LogisticRegressionfrom sklearn import svmimport sklearn as sklearnfrom sklearn.feature_extraction import DictVectorizerfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.ensemble import RandomForestClassifierimport joblibfrom sklearn.metrics import classification_reportfrom xgboost import XGBClassifierfrom sklearn.metrics import confusion_matrixroot_path = "models_1"def get_dataset(): train_data = np.load('datasets/train_data.npz') return train_datadef train_by_LogisticRegression(train_data): X = train_data['x'] y = train_data['y'] # Separate train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42) logreg = LogisticRegression() logreg.fit(X_train, y_train) joblib.dump(logreg, root_path+'/LogisticRegression_model.joblib') score = logreg.score(X_train, y_train) score2 = logreg.score(X_test, y_test) print("LogisticRegression Training set accuracy: ", '%.3f'%(score)) print("LogisticRegression Test set accuracy: ", '%.3f'%(score2))def train_by_svm(train_data): X = train_data['x'] y = train_data['y'] # Separate train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42) model = svm.SVC(kernel='linear', verbose=True, probability=True) model.fit(X_train, y_train) joblib.dump(model, root_path+'/svm_model.joblib') score = model.score(X_train, y_train) score2 = model.score(X_test, y_test) print("SVM Training set accuracy: ", '%.3f' % (score)) print("SVM Test set accuracy: ", '%.3f' % (score2))def train_by_naive_bayes(train_data): X = train_data['x'] y = train_data['y'] # Separate train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42) model = MultinomialNB() model.fit(X_train, y_train) joblib.dump(model, root_path+'/naive_bayes_model.joblib') score = model.score(X_train, y_train) score2 = model.score(X_test, y_test) print("naive_bayes Training set accuracy: ", '%.3f' % (score)) print("naive_bayes Test set accuracy: ", '%.3f' % (score2))def train_by_random_forest(train_data): X = train_data['x'] y = train_data['y'] # Separate train and test sets X_train = X y_train = y X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42) model = RandomForestClassifier(criterion='gini', max_features='sqrt') model.fit(X_train, y_train) joblib.dump(model, root_path+'/random_forest_model.joblib') score = model.score(X_train, y_train) score2 = model.score(X_test, y_test) print("random forest Training set accuracy: ", '%.3f' % (score)) print("random forest Test set accuracy: ", '%.3f' % (score2))def train_by_xgb(train_data): X = train_data['x'] y = train_data['y'] # Separate train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42) model = XGBClassifier(use_label_encoder=False) model.fit(X_train, y_train) joblib.dump(model, root_path+'/xgb_model.joblib') score = model.score(X_train, y_train) score2 = model.score(X_test, y_test) print("xgb Training set accuracy: ", '%.3f' % (score)) print("xgb Test set accuracy: ", '%.3f' % (score2)) y_pred = model.predict(X_test) report = classification_report(y_test, y_pred, output_dict=True) # show_confusion_matrix(y_test, y_pred) print(report)def show_confusion_matrix(y_true, y_pred, pic_name = "confusion_matrix"): confusion = confusion_matrix(y_true=y_true, y_pred=y_pred) print(confusion) sns.heatmap(confusion, annot=True, cmap= 'Blues', xticklabels=['0','1','2'], yticklabels=['0','1','2'], fmt = '.20g') plt.xlabel('Predicted class') plt.ylabel('Actual Class') plt.title(pic_name) # plt.savefig('pic/' + pic_name) plt.show()if __name__ == '__main__': train_data = get_dataset() train_by_LogisticRegression(train_data) train_by_svm(train_data) train_by_naive_bayes(train_data) train_by_random_forest(train_data) train_by_xgb(train_data)
4. 预测
执行下面预测代码,结果是Ecuador胜于Qatar, 英国队胜于伊朗队。
[2][[0.05 0.22033333 0.72966667]]Probability of Ecuador winning: 0.730Probability of Draw: 0.220Probability of Qatar winning: 0.050[2][[0.02342857 0.21770455 0.75886688]]Probability of England winning: 0.759Probability of Draw: 0.218Probability of Iran winning: 0.023
完整代码
import joblibworldcup_teams = ['Qatar','Germany','Denmark', 'Brazil','France','Belgium', 'Serbia', 'Spain','Croatia', 'Switzerland', 'England','Netherlands', 'Argentina',' Iran', 'Korea Republic','Saudi Arabia', 'Japan', 'Uruguay','Ecuador','Canada', 'Senegal', 'Poland', 'Portugal','Tunisia', 'Morocco','Cameroon','USA', 'Mexico','Wales','Australia','Costa Rica', 'Ghana']root_path = "models_1"def verify_team_name(team_name): for worldcup_team in worldcup_teams: if team_name==worldcup_team: return True return Falsedef predict(model_dir =root_path+'/LogisticRegression_model.joblib', team_a='France', team_b = 'Mexico'): if not verify_team_name(team_a): print(team_a, ' is not correct') return if not verify_team_name(team_b) : print(team_b, ' is not correct') return logreg = joblib.load(model_dir) input_x = [{'Home Team Name': team_a, 'Away Team Name': team_b}] vec = joblib.load(root_path+"/vec.joblib") input_x = vec.transform(input_x) result = logreg.predict(input_x) print(result) result1 = logreg.predict_proba(input_x) print(result1) print('Probability of ',team_a , ' winning:', '%.3f'%result1[0][2]) print('Probability of Draw:', '%.3f' % result1[0][1]) print('Probability of ', team_b, ' winning:', '%.3f' % result1[0][0])if __name__ == '__main__': team_a = 'Ecuador' team_b = 'Qatar' predict('models/random_forest_model.joblib', team_a, team_b) team_a = 'England' team_b = ' Iran' predict('models/random_forest_model.joblib', team_a, team_b)
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END