接着上次的,这里主要介绍的是堆排序,二叉树的遍历,以及之前讲题时答应过的简单二叉树问题求解
堆排序
给一组数据,升序(降序)排列
思路
思考:如果排列升序,我们应该建什么堆?
首先,如果排升序,数列最后一个数是 最大数,我们的思路是通过 向上调整 或者 向下调整,数组存放的第一个数不是最小值(小堆)就是最大值(大堆),此时我们将最后一个数与第一个数交换,使得最大值放在最后,此时再使用向上调整 或者 向下调整,得到第二大的数,重复上述动作,很明显,我们需要的第一个数是最大值,因此我们需要建大堆
反之,排降序,建立小堆
代码
#includevoid downAdjust(int* pa, int parent, int n){int child = parent * 2 + 1;while (child < n){if (child + 1 pa[child + 1]){child++;}if (pa[parent] > pa[child]){swap(&pa[parent], &pa[child]);}else{break;}parent = child;child = parent * 2 + 1;}}int main(){int arr[] = { 1,3,2,5,7,4,7,4,2,5,6,8};int n = sizeof(arr) / sizeof(arr[0]);for (int i = (n - 1 - 1) / 2; i >= 0; i--){downAdjust(arr, i, n);}for (int i = n; i > 0; ){swap(&arr[0], &arr[i - 1]);downAdjust(arr, 0, --i);}for (int i = 0; i < n; i++){printf("%d ", arr[i]);}return 0;}
topK算法
在一组数据中,选出k个最大(最小)的数
思路
如果我们选择k个最大的数,假设数组的前k个数就是最大的数,这 k个数建立 小堆,带一个数与 后面的从第 k + 1个数开始,进行比较,如果比第一个数的就换下来,然后向下调整,直到每个所有数都比较完了
代码
void downAdjust(int* pa, int parent, int n){int child = parent * 2 + 1;while (child < n){if (child + 1 pa[child + 1]){child++;}if (pa[parent] > pa[child]){swap(&pa[parent], &pa[child]);}else{break;}parent = child;child = parent * 2 + 1;}}#includeint main(){int arr[] = { 1,6,10,3,5,8,46,23,6,25,3,40 };int n = sizeof(arr) / sizeof(arr[0]);int k = 0;scanf("%d", &k);for (int i = (k - 1 - 1) / 2; i >= 0; i--){downAdjust(arr, i, n);}for (int i = k; i arr[0]){swap(&arr[i], &arr[0]);downAdjust(arr, 0, k);}}for (int i = 0; i < k; i++){printf("%d ", arr[i]);}return 0;}
五. 二叉树的实现
1. 链接结构搭建二叉树
代码
typedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL *creatnode(TLType x){TL*pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree(){TL* tree1 = creatnode(1);TL *tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(3);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;return tree1;}#includeint main(){TL* p = NULL;p = CreatTree();}
我们搭建了一个这样的树结构:
2. 二叉树的遍历
二叉树的遍历可以分三种:前序,中序,后序,层序
a. 前序遍历:(根,左子树,右子树)
举例
这棵树的前序遍历是怎样的?(包括空树,用N表示)
val1 val2 val4 N N val5 N N val3 val6 N N val7 N N
代码实现
#include#includetypedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL *creatnode(TLType x){TL*pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree(){TL* tree1 = creatnode(1);TL *tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1;}#includevoid PrevOrder(TL *root){if (root == NULL){printf("N ");return;}printf("%d ", root->val);PrevOrder(root->left);PrevOrder(root->right);}int main(){TL* p = NULL;p = CreatTree();PrevOrder(p);}
运行结果:
b. 中序遍历:(左子树,根,右子树)
举例
这棵树的中序遍历是怎样的?(包括空树,用N表示)
N val4 N val2 N val5 N val1 N val6 N val3 N val7 N
代码实现
#include#includetypedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL *creatnode(TLType x){TL*pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree(){TL* tree1 = creatnode(1);TL *tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1;}#includevoid InOder(TL* root){if (root == NULL){printf("N ");return;}InOder(root->left);printf("%d ", root->val);InOder(root->right);}int main(){TL* p = NULL;p = CreatTree();InOder(p);}
运行结果:
c. 后序遍历:(左子树,右子树,根)
举例
这棵树的后序遍历是怎样的?(包括空树,用N表示)
N N val4 N N val5 val2 N N val6 N N val7 val3 val1
代码实现
#include#includetypedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL* creatnode(TLType x){TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree(){TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1;}void PostOder(TL* root){if (root == NULL){printf("N ");return;}PostOder(root->left);PostOder(root->right);printf("%d ", root->val);}int main(){TL* p = NULL;p = CreatTree();PostOder(p);}
运行结果:
d. 层序遍历
一排排的遍历
画图举例
实现思路
这里我们借助队列(可以先进先出),开辟的数组里面存放根节点的地址(通过地址可以找到左右子树,否则如果存值是没有办法找到左右子树),打印完根节点的值,就释放,存入左右子树的节点
代码实现
实现的二叉树是这样的:
#include#include#includetypedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL* creatnode(TLType x){TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree(){TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1;}typedef struct QueueNode{struct QueueNode* next;TL* data;}QNode;typedef struct Queue{QNode* head;QNode* tail;int size;}Que;void QueueInit(Que* pq){assert(pq);pq->head = pq->tail = NULL;pq->size = 0;}void QueueDestroy(Que* pq){assert(pq);QNode* cur = pq->head;while (cur){QNode* next = cur->next;free(cur);cur = next;}pq->head = pq->tail = NULL;pq->size = 0;}void QueuePush(Que* pq, TL* x){assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->data = x;newnode->next = NULL;if (pq->tail == NULL){pq->head = pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++;}bool QueueEmpty(Que* pq){assert(pq);return pq->head == NULL;}void QueuePop(Que* pq){assert(pq);assert(!QueueEmpty(pq));if (pq->head->next == NULL){free(pq->head);pq->head = pq->tail = NULL;}else{QNode* next = pq->head->next;free(pq->head);pq->head = next;}pq->size--;}TL* QueueFront(Que* pq){assert(pq);assert(!QueueEmpty(pq));return pq->head->data;}int QueueSize(Que* pq){assert(pq);return pq->size;}void leverOrder(TL* root, Que* pq){QueuePush(pq, root);while (!QueueEmpty(pq)){TL* pa = QueueFront(pq);printf("%d ", pa->val);QueuePop(pq);if (pa->left != NULL){QueuePush(pq, pa->left);}if (pa->right != NULL){QueuePush(pq, pa->right);}}}int main(){TL* p = NULL;p = CreatTree();Que q;QueueInit(&q);leverOrder(p, &q);return 0;}
运行结果:
3. 简单二叉树经典问题求解
a. 求二叉树的节点个数
思路
想要求二叉树的节点可以分成 根节点 + 左子树 + 右子树
这里的遍历类似 前序遍历
代码
实现的树是这样的:
#include#includetypedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL* creatnode(TLType x){TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree(){TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1;}int TreeSize(TL* root){if (root == NULL){return 0;}return 1 + TreeSize(root->left) + TreeSize(root->right);}int main(){TL* p = NULL;p = CreatTree();int size = TreeSize(p);printf("%d ", size);return 0;}
b. 求树的高度
思路
求二叉树的高度,我们需要找到到那个最长的路径,这里采用分治的思想,如果为空树,返回 0 (空树高度为 0),调用左子树和右子树都会 + 1(+ 1可以理解成加上节点的高度),对比左子树和右子树,返回高度最大的那个
注:每求一次左右节点个数时,一定要保存,否则会有很大的时间浪费
代码
#include#includetypedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL* creatnode(TLType x){TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree(){TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);TL* tree8 = creatnode(8);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;tree4->left = tree8;return tree1;}int TreeHigh(TL* root){if (root == NULL){return 0;}int Left = 1 + TreeHigh(root->left);int Right = 1 +TreeHigh(root->right) ;return Left > Right " />
c. 求根节点的个数
思路
判断是否是根节点的方法就是判断它的左右子树是否是 空树,我们只需要遍历这棵树就行,但如果遍历时,根节点遇到空树这也是一种结束条件
代码
#include#includetypedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL* creatnode(TLType x){TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree(){TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);TL* tree8 = creatnode(8);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;tree4->left = tree8;return tree1;}int RootSize(TL* root){if (root == NULL){return 0;}if (root->left == NULL && root->right == NULL){return 1;}return RootSize(root->left) + RootSize(root->right);}int main(){TL* p = NULL;p = CreatTree();int root = RootSize(p);printf("%d ", root);return 0;}
d. 求倒数第k排节点的个数
思路
这个可以是求树的高度的变形,将计数倒过来
代码
#include#includetypedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL* creatnode(TLType x){TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree(){TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);TL* tree8 = creatnode(8);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;tree4->left = tree8;return tree1;}int TreeHigh(TL* root){if (root == NULL){return 0;}int Left = 1 + TreeHigh(root->left);int Right = 1 +TreeHigh(root->right) ;return Left > Right " />
e. 判断是否是相同的树
思路
采用前序,先比较根节点是否相同,再比较左右子树是否相同
代码
#include#include#includetypedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL* creatnode(TLType x){TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree1(){TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);TL* tree8 = creatnode(8);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;tree4->left = tree8;return tree1;}TL* CreatTree2(){TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1;}bool IsSameTree(TL* root1,TL* root2){if (root1 == NULL && root2 == NULL){return true;}if (root1 == NULL || root2 == NULL){return false;}if (root1->val != root2->val){return false;}return IsSameTree(root1->left, root2->left) && IsSameTree(root1->right, root2->right);}int main(){TL* p = NULL;p = CreatTree1();TL* q = CreatTree2();printf("%d ", IsSameTree(p, q));return 0;}
f. 找到某个值,返回节点的地址
思路
前序遍历完数组,如果对比左右子树,判断是否找到节点的地址
代码
#include#include#includetypedef int TLType;typedef struct TreeList{TLType val;struct TreeList* left;struct TreeList* right;}TL;TL* creatnode(TLType x){TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode;}TL* CreatTree(){TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(2);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);TL* tree8 = creatnode(8);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;tree4->left = tree8;return tree1;}TL* FindRoot(TL* root,int m){if (root == NULL){return NULL;}if (root->val == m){return root;}TL* Left = FindRoot(root->left, m);TL* Right = FindRoot(root->right, m);if (Left == NULL && Right == NULL){return NULL;}if (Left == NULL && Right != NULL){return Right;}else {return Left;}}int main(){TL* p = NULL;p = CreatTree();int m = 0;scanf("%d", &m);TL *root = FindRoot(p,m);if (root == NULL){printf("找不到\n");}else{printf("%d ", root->val);}return 0;}