【algorithm】算法基础课—二分查找算法(附笔记 | 建议收藏)

图片[1] - 【algorithm】算法基础课—二分查找算法(附笔记 | 建议收藏) - MaxSSL

write in front
个人主页:认真写博客的夏目浅石.
欢迎各位→点赞 + 收藏⭐️ + 留言
系列专栏:AcWing算法学习笔记
总结:希望你看完之后,能对你有所帮助,不足请指正!共同学习交流
✉️如果无聊的话,就来逛逛我的博客栈吧stack-frame.cn

文章目录

  • 前言
  • 一、二分查找的思想
  • 二、二分查找的模板
    • 1.寻找⼀个数(基本的⼆分搜索)
    • 2.边界问题
    • 3.寻找左侧边界的⼆分搜索
    • 4.寻找右侧边界的⼆分查找
  • 三、经典题目集
    • 总结

前言

图片[2] - 【algorithm】算法基础课—二分查找算法(附笔记 | 建议收藏) - MaxSSL
关于我写这篇博客的目的以及原因

其实很早前我就写过博客关于二分法,但是我是不满意的或是我觉得不完美的,于是寒假我又花费三天时间又学了一次,今天就把我所学到的经验和知识输出出来,以供复习和学习。
声明:这里知识基于算法小抄深入浅出的程序设计两本书+AcWing算法课(侵权删)


提示:以下是本篇文章正文内容,下面案例可供参考

一、二分查找的思想

由于找一个数遍历的时间复杂度有些题目会超时,所以就需要一个更加优秀的算法—二分查找算法,其实二分算法可以将时间复杂度缩小到logN 想一想为什么?

那么废话不多说,下面就来讲二分查找的基本思想:
我们开始定义两个变量,left,right分别指向数组的左端点和右端点(这里会出现左闭右开以及都是闭区间的边界问题,这个问题下面单独会讲解,大家不用着急)

利用数学上边的二分法就是一次检查一半,这样就可以一次去除一半的不符合要求的数据,大大加大了效率,通过不断地迭代,进而二分出正确答案

二、二分查找的模板

1.寻找⼀个数(基本的⼆分搜索)

这个场景是最简单的,肯能也是⼤家最熟悉的,即搜索⼀个数,如果存在,
返回其索引,否则返回 -1。

图片[3] - 【algorithm】算法基础课—二分查找算法(附笔记 | 建议收藏) - MaxSSL
这里再把二分模板的代码附上:
这里是一个左闭右开区间

//数组 //目标//数组长度 int binarySearch(int* nums, int target, int size){//特殊情况,可以了解一下这里不计入模板 //if(nums==NULL||size==0)//return -1;int left=0,right=size-1;while(left<right){int mid=left+(right-left)/2;//防止溢出if(nums[mid]>=target) r=mid;else l=mid+1;}if(nums[left]!=target) return -1;else return left; }

这里是一个左右都闭的方法

//数组 //目标//数组长度 int binarySearch(int* nums, int target, int size){//特殊情况,可以了解一下这里不计入模板 //if(nums==NULL||size==0)//return -1;int left=0,right=size-1;while(left<=right){if(nums[mid] == target)return mid;else if (nums[mid] < target)left = mid + 1; // 注意else if (nums[mid] > target)right = mid - 1; // 注意}if(nums[left]!=target) return -1;else return left; }

2.边界问题

1、为什么 while 循环的条件中是 <=,⽽不是 <?
因为初始化 right 的赋值是 size - 1 ,即最后⼀个元素的索
引,⽽不是 size

这⼆者可能出现在不同功能的⼆分查找中,区别是:前者相当于两端都闭区
间 [left, right]
,后者相当于左闭右开区间 [left, right) ,因为索引⼤
⼩为 size 是越界的。

我们这个算法中使⽤的是前者 [left, right] 两端都闭的区间。这个区间
其实就是每次进⾏搜索的区间。

什么时候应该停⽌查找呢?当然,找到了⽬标值的时候可以终⽌:

if(nums[mid] == target)return mid;

但如果没找到,就需要 while 循环终⽌,然后返回 -1。那 while 循环什么时
候应该终⽌?查找区间为空的时候应该终⽌,意味着你没得找了,就等于没
找到嘛。

while(left <= right) 的终⽌条件是 left == right + 1 ,写成区间的形式
就是 [right + 1, right] ,或者带个具体的数字进去 [3, 2] ,可⻅这时候
区间为空,因为没有数字既⼤于等于 3 ⼜⼩于等于 2 的吧。所以这时候
⼆分查找解题套路框架
while 循环终⽌是正确的,直接返回 -1 即可。
while(left < right) 的终⽌条件是 left == right ,写成区间的形式就是
[left, right] ,或者带个具体的数字进去 [2, 2] ,这时候区间⾮空,还
有⼀个数 2,但此时 while 循环终⽌了。也就是说这区间 [2, 2] 被漏掉
了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。

当然,如果你⾮要⽤ while(left < right) 也可以,我们已经知道了出错的
原因,就打个补丁好了:

//...while(left < right) {// ...}return nums[left] == target " />: -1;

2、为什么 left = mid + 1 , right = mid – 1 ?我看有的代码是 right =
mid 或者 left = mid ,没有这些加加减减,到底怎么回事,怎么判断?

这也是⼆分查找的⼀个难点,不过只要你能理解前⾯的内容,就能够很
容易判断。

本算法的查找区间是两端都闭的,
即 [left, right] 。那么当我们发现索引 mid 不是要找的 target 时,下
⼀步应该去搜索哪⾥呢?

当然是去搜索 [left, mid-1] 或者 [mid+1, right] 对不对?因为 mid 已
经搜索过,应该从搜索区间中去除。

3、此算法有什么缺陷?
我想你应该已经掌握了该算法的所有细节,以及这样处理的原因。但
是,这个算法存在局限性。
⽐如说给你有序数组 nums = [1,2,2,2,3] , target 为 2,此算法返回的索
引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我
想得到 target 的右侧边界,即索引 3,这样的话此算法是⽆法处理的。
⼆分查找解题套路框架

这样的需求很常⻅,你也许会说,找到⼀个 target,然后向左或向右线性搜
索不⾏吗?可以,但是不好,因为这样难以保证⼆分查找对数级的复杂度
了。

我们后续的算法就来讨论这两种⼆分查找的算法。

3.寻找左侧边界的⼆分搜索

//数组 //目标//数组长度 int binarySearch(int* nums, int target, int size){//特殊情况,可以了解一下这里不计入模板 //if(nums==NULL||size==0)//return -1;int left=0,right=size;//注意while(left<right){int mid=left+(right-left)/2;//防止溢出if(nums[mid]>=target) r=mid;else l=mid+1;}if(nums[left]!=target) return -1;else return left; }

1、为什么 while 中是 < ⽽不是 <= ?
⽤相同的⽅法分析,因为 right = size ⽽不是 size - 1 。因此每次循环的「搜索区间」是 [left, right) 左闭右开。
while(left < right) 终⽌的条件是 left == right ,此时搜索区间 [left, left) 为空,所以可以正确终⽌。

PS:这⾥先要说⼀个搜索左右边界和上⾯这个算法的⼀个区别,也是很多
读者问的:刚才的 right 不是 size – 1 吗,为啥这⾥⾮要写成
size 使得「搜索区间」变成左闭右开呢?

因为对于搜索左右侧边界的⼆分查找,这种写法⽐较普遍,我就拿这种写法
举例了,保证你以后遇到这类代码可以理解。你⾮要⽤两端都闭的写法反⽽
更简单,我会在后⾯写相关的代码,把三种⼆分搜索都⽤⼀种两端都闭的写
法统⼀起来,你耐⼼往后看就⾏了。

2、为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎
么办?

因为要⼀步⼀步来,先理解⼀下这个「左侧边界」有什么特殊含义:
图片[4] - 【algorithm】算法基础课—二分查找算法(附笔记 | 建议收藏) - MaxSSL
对于这个数组,算法会返回 1。这个 1 的含义可以这样解读: nums 中⼩于
2 的元素有 1 个。

⽐如对于有序数组 nums = [2,3,5,7] , target = 1 ,算法会返回 0,含义
是: nums 中⼩于 1 的元素有 0 个。
再⽐如说 nums = [2,3,5,7], target = 8 ,算法会返回 4,含义是: nums
中⼩于 8 的元素有 4 个。
⼆分查找解题套路框架

综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间
[0, size] ,所以我们简单添加两⾏代码就能在正确的时候 return
-1;

3、为什么 left = mid + 1 , right = mid ?和之前的算法不⼀样?
这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右
开,所以当 nums[mid] 被检测之后,下⼀步的搜索区间应该去掉 mid 分
割成两个区间,即 [left, mid)[mid + 1, right)

4、为什么返回 left ⽽不是 right ” />int left_bound(int[] nums, int target){int left = 0, right = nums.length 1;// 搜索区间为 [left, right]while (left <= right){int mid = left + (right left) / 2;if (nums[mid] < target) {// 搜索区间变为 [mid+1, right]left = mid + 1;}else if (nums[mid] > target) {// 搜索区间变为 [left, mid-1]right = mid 1;} else if (nums[mid] == target) {// 收缩右侧边界right = mid 1;}}}// 检查出界情况if (left >= nums.length || nums[left] != target)return 1;return left;}

4.寻找右侧边界的⼆分查找

int right_bound(int[] nums, int target){int left = 0, right = nums.length - 1;// 搜索区间为 [left, right]while (left <= right){int mid = left + (right - left) / 2;if (nums[mid] < target) {// 搜索区间变为 [mid+1, right]left = mid + 1;}else if (nums[mid] > target) {// 搜索区间变为 [left, mid-1]right = mid - 1;} else if (nums[mid] == target) {// 收缩右侧边界left = mid - 1;}}}// 检查出界情况if (lright < 0 || nums[right] != target)return -1;return right;}

思路类似左边界。

三、经典题目集

图片[5] - 【algorithm】算法基础课—二分查找算法(附笔记 | 建议收藏) - MaxSSL

int search(int* nums, int numsSize, int target){int left=0,right=numsSize-1;while(left<=right){int mid=left+(right-left)/2;if(nums[mid]==target){return mid;}else if(nums[mid]>target){right=mid-1;}else if(nums[mid]<target){left=mid+1;}}return -1;}// int search(int* nums, int numsSize, int target)// {// int left=0,right=numsSize-1;// while(left<right)// {// int mid=(right+left)/2;// if(nums[mid]>=target) right=mid;// else left=mid+1;// }// if(nums[left]!=target) return -1;// else return left;// }

图片[6] - 【algorithm】算法基础课—二分查找算法(附笔记 | 建议收藏) - MaxSSL

int searchInsert(int* nums, int numsSize, int target){int left=0,right=numsSize-1,ans=numsSize;while(left<=right){int mid=left+(right-left)/2;if(nums[mid]>=target){ans=mid;right=mid-1;}else left=mid+1;}return ans;}// {// int left=0,right=numsSize;// while(left<right)// {// int mid=(left+right)/2;// if(nums[mid]>=target) right=mid;// else left=mid+1;// }// return left;// }

图片[7] - 【algorithm】算法基础课—二分查找算法(附笔记 | 建议收藏) - MaxSSL

/* * 输入 **matrix 是长度为 matrixSize 的数组指针的数组,其中每个元素(也是一个数组) * 的长度组成 *matrixColSize 数组作为另一输入,*matrixColSize 数组的长度也为 matrixSize */ //二维数组 //数组长度 //一维数组 //目标数字bool findNumberIn2DArray(int** matrix, int matrixSize, int* matrixColSize, int target){if(matrix==NULL || matrixSize==0 || *matrixColSize==0)return false;int row=matrixSize; //行数int col=matrixColSize[0]; int i=0;int j=col-1;while(i<row && j>=0){if(matrix[i][j]==target) return true;else if(matrix[i][j]>target) j--;else if(matrix[i][j]<target) i++;}return false;}

总结

1、分析⼆分查找代码时,不要出现 else,全部展开成 else if ⽅便理解。
2、注意「搜索区间」和 while 的终⽌条件,如果存在漏掉的元素,记得在
最后检查。
3、如需定义左闭右开的「搜索区间」搜索左右边界,只要在 nums[mid] == target 时做修改即可,搜索右侧时需要减⼀。
4、如果将「搜索区间」全都统⼀成两端都闭,好记,只要稍改 nums[mid] ==target 条件处的代码和返回的逻辑即可,推荐拿⼩本本记下,作为⼆分搜索模板。

  我是夏目浅石,希望和你一起学习进步,刷题无数!!!希望各位大佬能一键三连支持一下博主,hhhh~我们下期见喽

特别注意:本次博客基于算法小抄以及AcWing算法课写出来的内容如果想进一步学习,希望您可以自己看书+看视频。

图片[8] - 【algorithm】算法基础课—二分查找算法(附笔记 | 建议收藏) - MaxSSL

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享