AI:大模型领域最新算法SOTA核心技术要点总结(一直持续更新)、大模型实战与理论经验总结(训练优化+代码实战+前沿技术探讨+最新案例应用)、带你精细解读多篇优秀的大模型论文、AI领域各种工具产品集合(文本/图片/编程/办公/视频/音频/多模态类)的简介之详细攻略

导读:由于ChatGPT、GPT-4近期火爆整个互联网,掀起了人工智能相关的二次开发应用的热潮,博主同时也应广大网友私信请求(太多了,无法一一回复,感谢理解!!)。在本文章中,博主将会及时、持续地更新人工智能领域最新的PTMs算法模型,以及LLMs大模型的部署实战案例。同时,博主也会特持续收集很多基于AI的产品合集,以方便广大网友试用和测试,并同时反馈产品效果,博主会及时更新产品排序。如果大家有新的AI工具,也可留言,博主会将留言的提到的AI小工具,加入到本文章内容。
………………0627更新………………
大模型领域近五年62篇论文,比如从GPT系列、BERT系列、Transformer-XL/T5,到PaLM、OPT、BLOOM、LLaMA、Alpaca、ChineseLLaMA、Vinua,一直到最近几天刚出的ChatGLM2、vLLM,各个算法的核心技术总结概览(其中Chinese Llama And Alpaca—6月15日版本值得深入研究),终于结束了,下一步核心代码复现进行总结!
………………0713更新………………

近一段时间,不论是从外部公开发布,还是与内部各位业界大佬在线上探讨或者私下交流时,博主深深地感觉到,太卷了,大模型领域是贼卷啊,周围的业界人士,都在把玩各种tricks,博主本人是深深的感受到了……国内AI公司,不出来弄个开源模型,总感觉自己啥都不是啊……

路人甲:啥?你是搞AIGC的?别先说话,你先告诉我你是几B的?有多少亿的token?你是哪个style?用的是SwiGLU吧,RoPE吧,还有个Flash Attention,加点AMP,给个4-bit,你说!你到底有没有用Fast?ComOpt呢?有木有AimOpt?哎,你倒是,你说话呀?

………………0730更新………………

大型语言模型发展总结:现状(挑战+LM四阶段+LLM与PLM的三大区别)、概述(两个代表性扩展定律/涌现能力三种典型/六大关键技术+GPT系列技术演进)、资源(开源模型/闭源API+六类语料库+三种框架库)、预训练(数据集+架构+模型训练)、适应LLMs(指令调优+对齐微调+参数高效微调+内存高效的模型自适应)、三大使用(ICT+CoT+PCT)、能力评估三种类型(基本+高级+基准)、提示设计实践指南、五大应用场景、未来六大方向

大型语言模型评估研究总结:理解智能本质(具备推理能力)、AI评估的重要性(识别当前算法的局限性+设计更强大模型的关键工具)、评估LLMs的四大意义、三维度(What+Where+How)综述LLMs评估、LLMs大语言模型的三大关键(Transformer+RLHF+提示工程)、评估LLMs任务五大类(NLURG+REBT+SS+NS+MA+Agent)、基准测试的两类(通用任务/特定下游任务)、评估的两种方式(自动/人工)、LLMs的成功(四类)与失败(四类)案例、未来七大机遇(设计AGI基准测试+完整的行为评估+鲁棒性评估+动态与演进的评估【LLMs的记忆性导致训练数据污染】+审查评估系统本身+统一评估+超越评估)

………………0822更新………………

新增ChatGLM2、LLaMA2模型的部署、训练、推理相关实战案例,并实现本地化的知识库进行pdf文档搜索对话问答任务应用。

………………0909更新………………

新增Chinese-LLaMA-2、Baichuan-2等模型的部署、训练、推理相关实战案例。
………………0925更新………………

新增Falcon180B、InternLM-20B、FLM-101B、Colossal-LLaMA-2等模型,FlashAttention-2等优化技巧,以及Megatron-LM/Colossal-AI/DeepSpeed加速框架等使用方法。并详细解读了Chinese-LLaMA-2、ChatGLM-2、Baichuan-2等模型的预训练和微调的源代码,同时总结了企业级GPT模型的国内外两条路线涉及的代码核心要点,着重分析了当模型能力不足的时候,如何让用户更好的体验;并描述了生产环境中面临的两大挑战以及三大技术提升部署效率。

………………1027更新………………

新增ChatGLM3等模型,并增加基于LLMs的横向赋能应用(包括RAG应用+Agent应用等)、纵向赋能场景(包括代码场景+医疗场景+法律场景等)的LLMs设计思路及其实战案例详细说明,以及场景应用流程导图。

………………1101更新………………

新增部署微调后大模型的一些实战应用经验(尤其是模型备案+环境搭建+生产部署+压测+性能调优等方面),以及基于LLMs实现的RAG应用主流常用框架、Agent应用主流常用框架、十多项具体案例应用及其实战代码部署以及性能评估。
博主简评,模型部署需要LLMOPS标准化和规范化(要从宏观可持续和可扩展角度优化),基于LLMs优化的HFKR实现,RAG应用流程在业界已基本固化(但会在几个细分方向优化,比如分块技术、过滤用户信息技术、提取table和image技术【心智模型】等上继续优化来提高),但是Agent应用真是炸天,太有趣了,大有想象空间

目录

相关文章

NLP:自然语言处理技术最强学习路线之NLP简介(岗位需求/必备技能)、早期/中期/近期应用领域(偏具体应用)、经典NLP架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装(更新中)

大模型领域最新算法SOTA总结

0、大模型领域近五年62篇论文核心技术总结概览——思维导图(更新中)

0728更新

0625更新

1、大型语言模型领域最新模型概述

LLMs:大型语言模型发展总结—现状(挑战+LM四阶段+LLM与PLM的三大区别)、概述(两个代表性扩展定律/涌现能力三种典型/六大关键技术+GPT系列技术演进)、资源(开源模型/闭源API+六类语料库+三种框架库)、预训练(数据集+架构+模型训练)、适应LLMs(指令调优+对齐微调+参数高效微调+内存高效的模型自适应)、三大使用(ICT+CoT+PCT)、能力评估三种类型(基本+高级+基准)、提示设计实践指南、五大应用场景、未来六大方向

LLMs:大型语言模型评估研究总结—理解智能本质(具备推理能力)、AI评估的重要性(识别当前算法的局限性+设计更强大模型的关键工具)、评估LLMs的四大意义、三维度(What+Where+How)综述LLMs评估、LLMs大语言模型的三大关键(Transformer+RLHF+提示工程)、评估LLMs任务五大类(NLURG+REBT+SS+NS+MA+Agent)、基准测试的两类(通用任务/特定下游任务)、评估的两种方式(自动/人工)、LLMs的成功(四类)与失败(四类)案例、未来七大机遇(设计AGI基准测试+完整的行为评估+鲁棒性评估+动态与演进的评估【LLMs的记忆性导致训练数据污染】+审查评估系统本身+统一评估+超越评估)

LLMs之ChatGPT:类ChatGPT的LLMs的核心技术原理讲解之训练GPT(预训练阶段【数据收集→token 化→超参数→批组化→评估模型→微调下游任务/少样本prompt】+SFT监督式微调阶段+RLHF【奖励建模+RL】+ChatGPT(RLHF模型)对比 Kuna(SFT模型)、使用 GPT(序列采样token/token来思考【知识广博+储存大量事实+无损记忆】/思维链/ReAct+AutoGPT/指定顺序优化)

PTM:预训练大模型时代的多角度思考与辩论—大模型爆发原因、应用思考、数学思考(基于Transformer类的大模型本质上是否基于概率统计)、智能思考(GPT-4牛叉能力原因剖析/涌现能力/思维连)、提升LLMs性能的三大工具及其对比、LLMs当前缺点(产生幻觉+遗忘通用知识)之详细攻略

NLP之LLMs:大型语言模型领域LLMs技术发展史、LLMs最新模型的简介、各种维度对比(模型参数/训练时间/训练成本)、在线测试网站集合之详细攻略(持续更新)

NLP之LLMs:《Zeno Chatbot Report》的翻译与解读—CMU副教授详测七款个类ChatGPT大模型(GPT-2、LLaMa、Alpaca、Vicuna、MPT-Chat、Cohere Command和ChatGPT)

NLP之LLMs:大型语言模型领域之SOTA(最先进模型的新技术)的相关术语知识、代表性算法核心技巧累计总结之详细攻略

LLMs:大型语言模型进化树结构图之模型(BERT-style/GPT-style)、数据(预训练数据/微调数据/测试数据)、NLP任务(五大任务+效率+可信度+基准指令调优+对齐)、三大类模型的使用和限制(Encoder-only、Encoder-Decoder、Decoder-only)

PTMs:预训练大模型算法衍生发展图及其参数对比、基于Transformer的三类基础架构及其代表性算法(BERT/RoBERTa/ALBERT、GPT/LLaMA系列、XLNet/BART/T5)之详细攻略

AIGC:训练GPT(预训练阶段【数据收集→token 化→超参数→批组化→评估模型→微调下游任务/少样本prompt】+SFT监督式微调阶段+RLHF【奖励建模+RL】+ChatGPT(RLHF模型)对比 Claude(SFT模型)、使用 GPT(序列采样token/token来思考【知识广博+储存大量事实+无损记忆】/思维链/ReAct+AutoGPT/指定顺序优化)

AGI:人工智能大模型领域实战篇—设计一个类似GPT-3.5/GPT-4的大模型从开发→部署→应用需要经过的八大步骤、为什么只有少数公司和机构能够承担这样的训练成本之详细介绍

LLMs:预训练大模型实现全流程详解(以LLaMA为例)—收集数据→数据预处理→模型训练与评估→模型微调与推理→模型部署→实现复杂任务之详细攻略

LLMs之ChatGPT:研究探讨国内外各大AI机构在预训练大模型领域构建或复现类似ChatGPT失败原因以及ChatGPT适用和不适用任务场景的综合梳理

LLMs:LLM在生产环境中实际应用中面临的两大挑战(内存需求+对更长上下文输入需求)+提升LLM部署效率的三大技术(低精度量化+更高效的自注意力算法Flash Attention+优化模型结构【位置嵌入/键-值缓存】)

2、LLMs领域代表性算法

2023年10月27日,LLMs之ChatGLM3:ChatGLM3/ChatGLM3-6B的简介(多阶段增强+多模态理解+AgentTuning技术)、安装、使用方法之详细攻略

2023年9月25日,LLM之Colossal-LLaMA-2:Colossal-LLaMA-2的简介、安装、使用方法之详细攻略

2023年9月7日,LLMs之FLM-101B:《FLM-101B: An Open LLM and How to Train It with $100K Budget一个开放的LLM和如何用10万美元的预算训练训它》翻译与解读

2023年9月20日,LLMs之InternLM:InternLM-20B的简介、安装、使用方法之详细攻略

2023年9月7日,LLMs之Falcon 180B:Falcon 180B的简介、安装、使用方法之详细攻略

2023年9月6日,LLMs之Baichuan 2:Baichuan 2的简介、安装、使用方法之详细攻略

2023年08月25日,LLMs之Code:Code Llama的简介、安装、使用方法之详细攻略

2023年07月31日,LLMs:Chinese-LLaMA-Alpaca-2的简介、安装、案例实战应用之详细攻略

2023年07月18日,LLMs之LLaMA2:LLaMA2的简介(技术细节)、安装、使用方法(开源-免费用于研究和商业用途)之详细攻略

2023年07月11日,LLMs之Baichuan:Baichuan-13B模型的简介(包括Baichuan-7B)、安装、使用方法之详细攻略

2023年07月06日,LLMs之InternLM:InternLM/InternLM-7B模型的简介、安装、使用方法之详细攻略

2023年06月25日,LLMs之ChatGLM2:ChatGLM2-6B的简介、安装、使用方法之详细攻略

2023年06月20日,LLMs:《vLLM: Easy, Fast, and Cheap LLM Serving with PagedAttention》翻译与解读

2023年06月15日,LLMs:《Efficient And Effective Text Encoding For Chinese Llama And Alpaca—6月15日版本》翻译与解读

2023年06月5日,LLMs:《Orca: Progressive Learning from Complex Explanation Traces of GPT-4》翻译与解读

2023年04月17日,Chinese LLaMA and Alpaca,LLMs:《Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca》翻译与解读

2023年4月8日,LLMs之BELLE:BELLE(一款能够帮到每一个人的中文LLM引擎)的简介(基于Alpaca架构+中文优化+考察词表扩充/数据质量/数据语言分布/数据规模的量化分析)、使用方法、案例应用之详细攻略

2023年03月30日,LLMs之Vicuna:《Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality》翻译与解读

2023年03月29日,AIGC:ColossalChat(基于LLM和RLHF技术的类似ChatGPT的聊天机器人)/ColossalAI的简介、安装、使用方法之详细攻略

2023年03月15日,AIGC之GPT-4:GPT-4的简介(核心原理/意义/亮点/技术点/缺点/使用建议)、使用方法、案例应用(计算能力/代码能力/看图能力等)之详细攻略

LLMs之GPT-4:基于OpenAl新增函数调用功能的简介、两种方法(原生SDK和LangChain框架)实现之详细攻略

2023年03月14日,LLMs之Alpaca:《Alpaca: A Strong, Replicable Instruction-Following Model》翻译与解读

2023年03月10日,LLMs之GLM-130B/ChatGLM:《GLM-130B: AN OPEN BILINGUAL PRE-TRAINED MODEL》翻译与解读

2023年02月25日,AIGC之LLaMA:《LLaMA: Open and Efficient Foundation Language Models》翻译与解读

2022年11月30日,AIGC:ChatGPT(一个里程碑式的对话聊天机器人)的简介(意义/功能/核心技术等)、使用方法(七类任务)、案例应用(提问基础性/事实性/逻辑性/创造性/开放性的问题以及编程相关)之详细攻略

LLMs——2022年1月~2022年12月

LLMs之InstructGPT:《Training language models to follow instructions with human feedback》翻译与解读

LLMs:《PaLM: Scaling Language Modeling with Pathways》翻译与解读

LLMs:《OPT: Open Pre-trained Transformer Language Models》翻译与解读

LLMs:《BLOOM: A 176B-Parameter Open-Access Multilingual Language Model》翻译与解读

3、LLMs领域大模型部署实战案例

LLMs:预训练大模型六大步骤实现全流程详解(以LLaMA为例)—收集数据→数据预处理→模型训练与评估→模型微调与推理→模型部署→实现复杂任务之详细攻略

LLMs:构建用于生产的LLM应用程序的挑战与案例经验总结——prompt工程面临的挑战(自然语言的模糊性/成本和延迟/提示VS微调VS替代方案/向前和向后兼容性)、任务组合性(多个任务组成的应用/ 代理-工具-控制流)、有前景的应用案例(AI助手、聊天机器人、编程与游戏、提速学习、交互数据【不适合大量数据分析】、搜索和推荐、销售)之详细攻略

3.1、部署ChatGLM-6B:混合精度+ZeRO+fine-tuning/P-tuning v2/LoRA

LLMs:从头到尾手把手教大家利用ChatGLM-6B模型实现训练、部署、推理(CLI/GUI)、微调(两个提效技巧+三种微调方法)图文教程之详细攻略

LLMs:基于Langchain框架利用ChatGLM大模型接入本地知识库实现问答响应项目图文教程之详细攻略

3.2、部署中文版LLaMA系列/Alpaca系列——Chinese-LLaMA-Alpaca、Chinese-Alpaca-LoRA-7b:合并权重+LoRA技巧+指令微调

LLMs:在单机CPU+Windows系统上实LLaMA模型(基于facebookresearch的GitHub)进行模型部署且实现模型推理全流程步骤的图文教程(非常详细)

LLMs:在单机CPU+Windows系统上实现中文LLaMA算法(基于Chinese-LLaMA-Alpaca)进行模型部署且实现模型推理全流程步骤的图文教程(非常详细)

LLMs:基于Chinese-LLaMA-Alpaca开源代码在Ng单卡利用LLaMA(Meta)和Alpaca(斯坦福)实现定义数据集(生成指令数据)→数据预处理(token分词/合并权重)→预训练(LoRA的参数/LLaMA的参数)→指令微调LoRA权重(继续训练/全新训练)→模型推理(CLI、GUI【webui/LLaMACha/LangChain】)

3.3、部署原始LLaMA系列/Alpaca系列——多卡并行+LoRA技巧、多卡并行+QLoRA技巧

LLMs之Alpaca_LoRA:Alpaca_LoRA简介(痛点/改进)、实战案例—基于CentOS和多卡(A800+并行技术)实现全流程完整复现Alpaca_7B—安装依赖、转换为HF模型文件、模型微调(full fine-turning+LoRA+单卡/多卡)、模型推理(CLI/llama.cpp/Docker封装)图文教程之详细攻略

LLMs之LLaMA-7B-QLoRA:基于Alpaca-Lora代码在CentOS和多卡(A800+并行技术)实现全流程完整复现LLaMA-7B—安装依赖、转换为HF模型文件、模型微调(QLoRA+单卡/多卡)、模型推理(对比终端命令/llama.cpp/Docker封装)图文教程之详细攻略

3.4、部署Vicuna:权重合并

LLMs:在Linux服务器系统上实Vicuna-7B本地化部署(基于facebookresearch的GitHub)进行模型权重合并(llama-7b模型与delta模型权重)、模型部署且实现模型推理全流程步骤的图文教程(非常详细)

3.5、部署ChatGLM2

LLMs之ChatGLM2:ChatGLM2-6B的单机推理(API/CLI/GUI)、低成本部署(GPU量化部署/CPU及其量化部署/Mac部署/多卡部署)、有限资源下高效微调(全参/P-tuning v2)、模型评估之图文教程之详细攻略

LLMs之ChatGLM:ChatGLM Efficient Tuning(一款高效微调ChatGLM-6B/ChatGLM2-6B的工具【LoRA/P-Tuning V2/Freeze Tuning/全量微调】)的简介、安装、使用方法之详细攻略

LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM2/LLaMA2/Baichuan等】的高效工具【预训练+指令监督微调+奖励模型训练+PPO 训练+DPO 训练】)的简介、安装、使用方法之详细攻略

LLMs之ChatGLM2:基于ChatGLM Efficient Tuning(微调工具包)实现对ChatGLM2进行LoRA微调并进行推理测试图文教程之详细攻略

LLMs之ChatGLM2:ChatGLM2-6B本地部署之单机推理(API/CLI/GUI)、低成本部署(GPU量化部署/CPU及其量化部署/Mac部署/多卡部署)、有限资源下高效微调(全参/P-tuning v2)、模型评估和推理之图文教程之详细攻略

3.6、部署LLaMA2

LLMs之LLaMA2:基于text-generation-webui工具来本地部署并对LLaMA2模型实现推理执行对话聊天问答任务(一键安装tg webui+手动下载模型+启动WebUI服务)、同时微调LLaMA2模型(采用Conda环境安装tg webui+PyTorch→CLI/GUI下载模型→启动WebUI服务→GUI式+LoRA微调→加载推理)之图文教程详细攻略

LLMs之LLaMA2:基于云端进行一键部署对LLaMA2模型实现推理(基于text-generation-webui)执行对话聊天问答任务、同时微调LLaMA2模型(配置云端环境【A100】→下载数据集【datasets】→加载模型【transformers】→分词→模型训练【peft+SFTTrainer+wandb】→基于HuggingFace实现云端分享)之图文教程详细攻略

LLMs之LLaMA2:基于LocalGPT利用LLaMA2模型实现本地化的知识库(Chroma)并与本地文档(基于langchain生成嵌入)进行对话问答图文教程+代码详解之详细攻略

4、LLMs领域大模型训练与微调经验技巧总结

4.1、方案与流程

LLMs:预训练大模型实现全流程详解(以LLaMA为例)—收集数据→数据预处理→模型训练→模型微调与推理→模型部署之详细攻略

LLMs:基于开源大模型实现对中文语料实战应用之两类模型(国外模型方案**等、国内模型方案**等)的设计流程(重在选型思路+核心技术+实现方案)之详细攻略

4.2、训练优化技术

MLOPS:大数据/服务器下的大规模机器学习技术—并行计算技术的简介、训练大模型3+分布式并行策略:数据并行DP【MPI/Hadoop】、模型并行MP【Megatron-LM/PaLM】、管道并行PP【多核CPU/GPU】)、两种实现方式(**并行、**并行)之详细攻略

PTMs:大模型预训练技巧之ZeRO训练优化技术(DeepSpeed库-减少参数的冗余+优化**分片)的简介(四大核心技术(模型分片/梯度累积/内存优化/分布式训练)、两大优化技术(ZeRO-Offload/ZeRO-Redundancy)、ZeRO3的三个版本(参数分片→**分片→激**分片)、使用方法、案例应用之详细攻略

ML之DistributedML:分布式机器学习系统性能优化的简介(分析系统性能瓶颈)、性能调优常用库(CUDA的GPU加速+NCCL多卡通信+RDMA高性能网络传输+分布式系统性能监控)及其使用方法之详细攻略

4.4.、微调技术

PTMs之PEFT:参数高效微调PEFT方法的简介(只微调少量参数)、Transformer体系结构的核心构建块(大多PEFT方法只依赖基本的MHA+**结构)、分类与比较(加性方法【Adapter-like/****【Prompt Tuning、Prefix-Tuning、IPT】/IA3】/选择方法【Bitfit/Diffpruning/FAR/Fishmask】/基于重参数化方法【I-SAID→LORA→**】/混合方法【SparseAdapter/MAM Adapters/UniPELT/Compacter/**】)、案例实践与总结(有限计算资源下使用和微调/降低超参数敏感性的方法/低秩重参数化)

LLMs之Data:指令微调的简介、Self Instruction思想(一种生成指令数据集的方法论—主要用在指令微调阶段)的简介、Alpaca/BELLE应用、实战案例代码实现之详细攻略

4.5、训练任务

NLP:自然语言技术领域相关任务分类—七大任务(表示→**提取→**匹配→**分类→**聚类→生成→**问答)、两大层次(五种顶层应用【文本分类/生成/翻译/语音识别/手语识别】+四种底层基本【词法分析/**分析/语义分析/**抽取】)、LLMs四大类(无监督预训练/有监督微调/RL微调/多模态增强)之详细攻略

4.6、算法发展

PTMs:预训练大模型算法衍生发展图及其参数对比、基于Transformer的三类基础架构及其代表性算法(BERT/RoBERTa/ALBERT/**/**、GPT/LLaMA系列/**/**、XLNet/BART/T5/**/**)之详细攻略

5、LLMs领域大模型落地场景应用的挑战与案例经验总结——横向赋能应用

5.1、RAG场景

LLMs之RAG:知识检索增强生成方法(搭建本地知识库、利用外挂信息库增强LLMs自身能力的一种方法,外部……+LLMs…=知识问答任务)的简介、实现方法(LangChain/等)、案例应用之详细攻略

LLMs之RAG:基于LangChain框架利用ChatGPT的API实现一个与在线网页交互的对话机器人—五大思路步骤—加载文档WebBaseLoader网址文件→文档分割(chunk_size=500)→文本嵌入化(OpenAIEmbeddings)并存储到向量库(Chroma)→构造Prompt(拉取一个对象并将其返回为 LangChain对象)→定义LLMs(ChatOpenAI)→输入查询文本来构造RAG chain并利用LLMs生成响应

LLMs之RAG:基于LangChain框架对pdf文件通过创建本地知识库(m3e+FAISS+混合检索)+利用大模型对检索到的上下文信息进行问答生成(LLM及其分词模型选择Qwen-7B-Chat-Int4)=实现一个基于RAG的本地大模型问答程序之详细攻略

LLMs之RAG之LangChain-ChatGLM:基于Langchain框架利用Embedding模型(text2vec-large-chinese)+ChatGLM-6B模型(Docker 部署)实现—生成本地知识库(加载文档→读取文档→文档分割/文本分块→文本向量化并存储)→检索【问句Embdding+相似度计算+匹配TopK的promp作为上下文】→组成Context喂给LLMs→大模型实现问答响应(CLI/WebUI/VUE,对话任务/知识库问答/Bing搜索)图文教程之详细攻略

LLMs之RAG:LangCha……(一款中文友好的全流程本地知识库问答应用)的简介(支持ChatGLM-2/LLaMA-2等多款主流LLMs+多款embedding模型m3e等+多种TextSplitter分词器)、安装(离线私有部署+支持RTX3090 ,支持FAISS/Milvus/PGVector向量库, FastAPI的API调用服务/基于Streamlit 的WebUI操作)、使用方法(不包括微调/训练,支持LLM对话/知识库问答/搜索引擎问答)之详细攻略

LLMs之RAG之Loc……:基于……利用LLaMA-2模型实现本地化的知识库(Chroma)并与本地文档(基于langchain生成嵌入)进行对话问答:加载文档并分割成块生成嵌入获取VDB本地化的知识库(Chroma)→加载本地LLMs→设置问答检索链→基于用户输入获取查询问题+获取问题答案和源文档—图文教程+代码详解之详细攻略

5.2、Agent场景

LLMs之Agent:Agent(一种训练LLM模拟人类在现实世界中各种规则和行为系统)的简介、实现案例(LangChain/ChemCrow/Generative Agents/AutoGPT/SuperAGI/GPT-Engineer等)、实战应用之详细攻略

2023年1月,Py之Langchain:Langchain(LLM大型语言模型应用程序框架/将LLMs个体进行flow的能力)的简介、安装、使用方法之详细攻略

LLMs之Langchain之Agent:案例集合—利用langchain实现Agent的多种组合工具应用(如调用ChatGPT的API+wikipedia工具+llm-math计算器工具实现实现回答问题任务)

2023年4月11日,ChemCrow:专注有机合成、药物发现和材料设计等任务,将CoT推理与任务相关的工具相结合=LLM+13个专业工具+LangChain框架

2023年4月13日(论文),Generative Agents—基于Agents的虚拟场景模拟:斯坦福的“虚拟小镇”,由25个AI智能体(每个人物都由LLM控制)复现《西部世界》,模拟了25个虚拟人物在《模拟人生》游戏灵感的沙盒环境中生活和互动(基于过去的经验)

2023年4月16日,AutoGPT—一个有趣的概念验证演示:基于GPT-4驱动的能够自主完成任务的人工智能模型(无需人类的干预)。但是通过自然语言接口操作存在可靠性问题

2023年5月,SuperAGI是一款开源框架,用于构建、管理和运行有用的自主AI Agent

2023年6月,GPT-Engineer:根据提示生成整个代码库,其采用LLM进行任务细分和需求澄清

2023年9月,LLMs之Agent之AutoGen:AutoGen的简介、安装、使用方法之详细攻略

6、LLMs领域大模型落地场景应用的挑战与案例经验总结——纵向赋能场景

​LLMs之Medical:大语言模型纵向赋能场景—垂直行业场景应用之大模型代码场景的简介、主流LLMs(SQLCoder/Code Llama/Ziya-Coding/CodeShell等)及其评估基准(包括数据集)、案例应用之详细攻略

LLMs之Law:大语言模型纵向赋能场景—垂直行业场景应用之大模型法律行业的简介、主流LLMs(PowerLawGLM/ChatLaw)、经典应用之详细攻略

LLMs之Medical:大语言模型纵向赋能场景—垂直行业场景应用之大模型医疗行业的简介、主流LLMs(ChatGLM-Med/ChatDoctor/Radiology-GPT/Qilin-Med等)及其评估基准(包括数据集)、案例应用之详细攻略

AI工具合集综合

一、AI工具产品—文本类集合

二、AI工具产品—图片、绘图类集合

三、AI工具产品—PPT类办公集合

四、AI工具产品—代码编程类集合

五、AI工具产品—音频类集合

六、AI工具产品—视频类集合

gen-2(一句话生成视频)

七、AI工具产品—多模态类集合

国内外网友提供的AI工具集导航栏(请网友自行鉴别网址安全性)

1、500+ AI工具导航大全,国内外AI工具集合网站

2、互联网前3000+人工智能工具

3、AI导航网 | 收录优质AI人工智能项目,与你一起遇见未来!

4、AI导航 – AI人工智能工具导航 | 工具达人

5、AI工具层出不穷,做一个善假于物者,了解它,学习它,应用它

6、发现全球优质AIGC工具,与创作者一同成长

7、Ai导航 | 最新最前沿的ai产品

8、AI导航网 – 人工智能领域的导航网站


相关文章

NLP:自然语言处理技术最强学习路线之NLP简介(岗位需求/必备技能)、早期/中期/近期应用领域(偏具体应用)、经典NLP架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装(更新中)

NLP:自然语言处理技术最强学习路线之NLP简介(岗位需求/必备技能)、早期/中期/近期应用领域(偏具体应用)、经典NLP架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装(更新中)_nlp算法岗位技能要求_一个处女座的程序猿的博客-CSDN博客

大模型领域最新算法SOTA总结

0、大模型领域近五年62篇论文核心技术总结概览——思维导图(更新中)

0728更新

0625更新

1、大型语言模型领域最新模型概述

LLMs:大型语言模型发展总结—现状(挑战+LM四阶段+LLM与PLM的三大区别)、概述(两个代表性扩展定律/涌现能力三种典型/六大关键技术+GPT系列技术演进)、资源(开源模型/闭源API+六类语料库+三种框架库)、预训练(数据集+架构+模型训练)、适应LLMs(指令调优+对齐微调+参数高效微调+内存高效的模型自适应)、三大使用(ICT+CoT+PCT)、能力评估三种类型(基本+高级+基准)、提示设计实践指南、五大应用场景、未来六大方向

https://yunyaniu.blog.csdn.net/article/details/131565801

LLMs:大型语言模型评估研究总结—理解智能本质(具备推理能力)、AI评估的重要性(识别当前算法的局限性+设计更强大模型的关键工具)、评估LLMs的四大意义、三维度(What+Where+How)综述LLMs评估、LLMs大语言模型的三大关键(Transformer+RLHF+提示工程)、评估LLMs任务五大类(NLURG+REBT+SS+NS+MA+Agent)、基准测试的两类(通用任务/特定下游任务)、评估的两种方式(自动/人工)、LLMs的成功(四类)与失败(四类)案例、未来七大机遇(设计AGI基准测试+完整的行为评估+鲁棒性评估+动态与演进的评估【LLMs的记忆性导致训练数据污染】+审查评估系统本身+统一评估+超越评估)

https://yunyaniu.blog.csdn.net/article/details/132012761

LLMs之ChatGPT:类ChatGPT的LLMs的核心技术原理讲解之训练GPT(预训练阶段【数据收集→token 化→超参数→批组化→评估模型→微调下游任务/少样本prompt】+SFT监督式微调阶段+RLHF【奖励建模+RL】+ChatGPT(RLHF模型)对比 Kuna(SFT模型)、使用 GPT(序列采样token/token来思考【知识广博+储存大量事实+无损记忆】/思维链/ReAct+AutoGPT/指定顺序优化)

https://yunyaniu.blog.csdn.net/article/details/130959866

PTM:预训练大模型时代的多角度思考与辩论—大模型爆发原因、应用思考、数学思考(基于Transformer类的大模型本质上是否基于概率统计)、智能思考(GPT-4牛叉能力原因剖析/涌现能力/思维连)、提升LLMs性能的三大工具及其对比、LLMs当前缺点(产生幻觉+遗忘通用知识)之详细攻略

https://yunyaniu.blog.csdn.net/article/details/130204199

NLP之LLMs:大型语言模型领域LLMs技术发展史、LLMs最新模型的简介、各种维度对比(模型参数/训练时间/训练成本)、在线测试网站集合之详细攻略(持续更新)

https://yunyaniu.blog.csdn.net/article/details/130863144

NLP之LLMs:《Zeno Chatbot Report》的翻译与解读—CMU副教授详测七款个类ChatGPT大模型(GPT-2、LLaMa、Alpaca、Vicuna、MPT-Chat、Cohere Command和ChatGPT)

https://yunyaniu.blog.csdn.net/article/details/130863019

NLP之LLMs:大型语言模型领域之SOTA(最先进模型的新技术)的相关术语知识、代表性算法核心技巧累计总结之详细攻略

https://yunyaniu.blog.csdn.net/article/details/130876779

LLMs:大型语言模型进化树结构图之模型(BERT-style/GPT-style)、数据(预训练数据/微调数据/测试数据)、NLP任务(五大任务+效率+可信度+基准指令调优+对齐)、三大类模型的使用和限制(Encoder-only、Encoder-Decoder、Decoder-only)

https://yunyaniu.blog.csdn.net/article/details/131445465

PTMs:预训练大模型算法衍生发展图及其参数对比、基于Transformer的三类基础架构及其代表性算法(BERT/RoBERTa/ALBERT、GPT/LLaMA系列、XLNet/BART/T5)之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131098969

AIGC:训练GPT(预训练阶段【数据收集→token 化→超参数→批组化→评估模型→微调下游任务/少样本prompt】+SFT监督式微调阶段+RLHF【奖励建模+RL】+ChatGPT(RLHF模型)对比 Claude(SFT模型)、使用 GPT(序列采样token/token来思考【知识广博+储存大量事实+无损记忆】/思维链/ReAct+AutoGPT/指定顺序优化)

https://yunyaniu.blog.csdn.net/article/details/130959866

AGI:人工智能大模型领域实战篇—设计一个类似GPT-3.5/GPT-4的大模型从开发→部署→应用需要经过的八大步骤、为什么只有少数公司和机构能够承担这样的训练成本之详细介绍

AGI:人工智能大模型领域实战篇—设计一个类似GPT-3.5/GPT-4的大模型从开发→部署→应用需要经过的八大步骤、为什么只有少数公司和机构能够承担这样的训练成本之详细介绍_一个处女座的程序猿的博客-CSDN博客

LLMs:预训练大模型实现全流程详解(以LLaMA为例)—收集数据→数据预处理→模型训练与评估→模型微调与推理→模型部署→实现复杂任务之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131332074

LLMs之ChatGPT:研究探讨国内外各大AI机构在预训练大模型领域构建或复现类似ChatGPT失败原因以及ChatGPT适用和不适用任务场景的综合梳理

https://yunyaniu.blog.csdn.net/article/details/131155739

LLMs:LLM在生产环境中实际应用中面临的两大挑战(内存需求+对更长上下文输入需求)+提升LLM部署效率的三大技术(低精度量化+更高效的自注意力算法Flash Attention+优化模型结构【位置嵌入/键-值缓存】)

https://yunyaniu.blog.csdn.net/article/details/133004502

2、LLMs领域代表性算法

2023年10月27日,LLMs之ChatGLM3:ChatGLM3/ChatGLM3-6B的简介(多阶段增强+多模态理解+AgentTuning技术)、安装、使用方法之详细攻略

LLMs之ChatGLM3:ChatGLM3/ChatGLM3-6B的简介(多阶段增强+多模态理解+AgentTuning技术)、安装、使用方法之详细攻略-CSDN博客

2023年9月25日,LLM之Colossal-LLaMA-2:Colossal-LLaMA-2的简介、安装、使用方法之详细攻略

LLM之Colossal-LLaMA-2:Colossal-LLaMA-2的简介、安装、使用方法之详细攻略-CSDN博客

2023年9月7日,LLMs之FLM-101B:《FLM-101B: An Open LLM and How to Train It with $100K Budget一个开放的LLM和如何用10万美元的预算训练训它》翻译与解读

LLMs之FLM-101B:《FLM-101B: An Open LLM and How to Train It with $100K Budget一个开放的LLM和如何用10万美元的预算训练训它》翻_一个处女座的程序猿的博客-CSDN博客

2023年9月20日,LLMs之InternLM:InternLM-20B的简介、安装、使用方法之详细攻略

LLMs之InternLM:InternLM-20B的简介、安装、使用方法之详细攻略_一个处女座的程序猿的博客-CSDN博客

2023年9月7日,LLMs之Falcon 180B:Falcon 180B的简介、安装、使用方法之详细攻略

LLMs之Falcon 180B:Falcon 180B的简介、安装、使用方法之详细攻略_一个处女座的程序猿的博客-CSDN博客

2023年9月6日,LLMs之Baichuan 2:Baichuan 2的简介、安装、使用方法之详细攻略

LLMs之Baichuan 2:Baichuan 2的简介、安装、使用方法之详细攻略_一个处女座的程序猿的博客-CSDN博客

2023年08月25日,LLMs之Code:Code Llama的简介、安装、使用方法之详细攻略

LLMs之Code:Code Llama的简介、安装、使用方法之详细攻略_一个处女座的程序猿的博客-CSDN博客

2023年07月31日,LLMs:Chinese-LLaMA-Alpaca-2的简介、安装、案例实战应用之详细攻略

LLMs:Chinese-LLaMA-Alpaca-2的简介、安装、案例实战应用之详细攻略_一个处女座的程序猿的博客-CSDN博客

2023年07月18日,LLMs之LLaMA2:LLaMA2的简介(技术细节)、安装、使用方法(开源-免费用于研究和商业用途)之详细攻略

LLMs之LLaMA2:LLaMA2的简介(技术细节)、安装、使用方法(开源-免费用于研究和商业用途)之详细攻略_一个处女座的程序猿的博客-CSDN博客

2023年07月11日,LLMs之Baichuan:Baichuan-13B模型的简介(包括Baichuan-7B)、安装、使用方法之详细攻略

LLMs之Baichuan:Baichuan-13B模型的简介、安装、使用方法之详细攻略_一个处女座的程序猿的博客-CSDN博客

2023年07月06日,LLMs之InternLM:InternLM/InternLM-7B模型的简介、安装、使用方法之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131692975

2023年06月25日,LLMs之ChatGLM2:ChatGLM2-6B的简介、安装、使用方法之详细攻略

LLMs之ChatGLM2:ChatGLM2-6B的简介、安装、使用方法之详细攻略_一个处女座的程序猿的博客-CSDN博客

2023年06月20日,LLMs:《vLLM: Easy, Fast, and Cheap LLM Serving with PagedAttention》翻译与解读

LLMs:《vLLM: Easy, Fast, and Cheap LLM Serving with PagedAttention》翻译与解读_一个处女座的程序猿的博客-CSDN博客

2023年06月15日,LLMs:《Efficient And Effective Text Encoding For Chinese Llama And Alpaca—6月15日版本》翻译与解读

https://yunyaniu.blog.csdn.net/article/details/131318974

2023年06月5日,LLMs:《Orca: Progressive Learning from Complex Explanation Traces of GPT-4》翻译与解读

LLMs:《Orca: Progressive Learning from Complex Explanation Traces of GPT-4》翻译与解读_一个处女座的程序猿的博客-CSDN博客

2023年04月17日,Chinese LLaMA and Alpaca,LLMs:《Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca》翻译与解读

LLMs:《Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca》翻译与解读_一个处女座的程序猿的博客-CSDN博客

2023年4月8日,LLMs之BELLE:BELLE(一款能够帮到每一个人的中文LLM引擎)的简介(基于Alpaca架构+中文优化+考察词表扩充/数据质量/数据语言分布/数据规模的量化分析)、使用方法、案例应用之详细攻略

LLMs之BELLE:BELLE(一款能够帮到每一个人的中文LLM引擎)的简介(基于Alpaca架构+中文优化+考察词表扩充/数据质量/数据语言分布/数据规模的量化分析)、使用方法、案例应用之详细攻略_一个处女座的程序猿的博客-CSDN博客

2023年03月30日,LLMs之Vicuna:《Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality》翻译与解读

https://yunyaniu.blog.csdn.net/article/details/130876638

2023年03月29日,AIGC:ColossalChat(基于LLM和RLHF技术的类似ChatGPT的聊天机器人)/ColossalAI的简介、安装、使用方法之详细攻略

https://yunyaniu.blog.csdn.net/article/details/130537064

2023年03月15日,AIGC之GPT-4:GPT-4的简介(核心原理/意义/亮点/技术点/缺点/使用建议)、使用方法、案例应用(计算能力/代码能力/看图能力等)之详细攻略

https://yunyaniu.blog.csdn.net/article/details/129573291

LLMs之GPT-4:基于OpenAl新增函数调用功能的简介、两种方法(原生SDK和LangChain框架)实现之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131326060

2023年03月14日,LLMs之Alpaca:《Alpaca: A Strong, Replicable Instruction-Following Model》翻译与解读

https://yunyaniu.blog.csdn.net/article/details/129775107

2023年03月10日,LLMs之GLM-130B/ChatGLM:《GLM-130B: AN OPEN BILINGUAL PRE-TRAINED MODEL》翻译与解读

LLMs之GLM-130B/ChatGLM:《GLM-130B: AN OPEN BILINGUAL PRE-TRAINED MODEL》翻译与解读_一个处女座的程序猿的博客-CSDN博客

2023年02月25日,AIGC之LLaMA:《LLaMA: Open and Efficient Foundation Language Models》翻译与解读

https://yunyaniu.blog.csdn.net/article/details/129770092

2022年11月30日,AIGC:ChatGPT(一个里程碑式的对话聊天机器人)的简介(意义/功能/核心技术等)、使用方法(七类任务)、案例应用(提问基础性/事实性/逻辑性/创造性/开放性的问题以及编程相关)之详细攻略

https://yunyaniu.blog.csdn.net/article/details/128229941

LLMs——2022年1月~2022年12月

下边四篇论文分别从微调、模型结构、多语言模型以及模型规模等角度,探索了提高语言模型性能和泛化能力的不同方法。它们以开源的形式发布强大的语言模型,为NLP研究和应用提供了有力工具。

LLMs之InstructGPT:《Training language models to follow instructions with human feedback》翻译与解读

ML:文本、图像等数值化数据相似度计算之余弦相似度计算三种python代码实现_如何把 信息转换为余弦相似度数据_一个处女座的程序猿的博客-CSDN博客

LLMs:《PaLM: Scaling Language Modeling with Pathways》翻译与解读

https://yunyaniu.blog.csdn.net/article/details/125476444

LLMs:《OPT: Open Pre-trained Transformer Language Models》翻译与解读

https://yunyaniu.blog.csdn.net/article/details/126091700

LLMs:《BLOOM: A 176B-Parameter Open-Access Multilingual Language Model》翻译与解读

https://yunyaniu.blog.csdn.net/article/details/128509792

3、LLMs领域大模型部署实战案例

LLMs:预训练大模型六大步骤实现全流程详解(以LLaMA为例)—收集数据→数据预处理→模型训练与评估→模型微调与推理→模型部署→实现复杂任务之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131332074

LLMs:构建用于生产的LLM应用程序的挑战与案例经验总结——prompt工程面临的挑战(自然语言的模糊性/成本和延迟/提示VS微调VS替代方案/向前和向后兼容性)、任务组合性(多个任务组成的应用/ 代理-工具-控制流)、有前景的应用案例(AI助手、聊天机器人、编程与游戏、提速学习、交互数据【不适合大量数据分析】、搜索和推荐、销售)之详细攻略

https://yunyaniu.blog.csdn.net/article/details/130877379

3.1、部署ChatGLM-6B:混合精度+ZeRO+fine-tuning/P-tuning v2/LoRA

LLMs:从头到尾手把手教大家利用ChatGLM-6B模型实现训练、部署、推理(CLI/GUI)、微调(两个提效技巧+三种微调方法)图文教程之详细攻略

https://yunyaniu.blog.csdn.net/article/details/120249551

LLMs:基于Langchain框架利用ChatGLM大模型接入本地知识库实现问答响应项目图文教程之详细攻略

https://yunyaniu.blog.csdn.net/article/details/130998758

3.2、部署中文版LLaMA系列/Alpaca系列——Chinese-LLaMA-Alpaca、Chinese-Alpaca-LoRA-7b:合并权重+LoRA技巧+指令微调

LLMs:在单机CPU+Windows系统上实LLaMA模型(基于facebookresearch的GitHub)进行模型部署且实现模型推理全流程步骤的图文教程(非常详细)

https://yunyaniu.blog.csdn.net/article/details/130979622

LLMs:在单机CPU+Windows系统上实现中文LLaMA算法(基于Chinese-LLaMA-Alpaca)进行模型部署且实现模型推理全流程步骤的图文教程(非常详细)

https://yunyaniu.blog.csdn.net/article/details/131016046

LLMs:基于Chinese-LLaMA-Alpaca开源代码在Ng单卡利用LLaMA(Meta)和Alpaca(斯坦福)实现定义数据集(生成指令数据)→数据预处理(token分词/合并权重)→预训练(LoRA的参数/LLaMA的参数)→指令微调LoRA权重(继续训练/全新训练)→模型推理(CLI、GUI【webui/LLaMACha/LangChain】)

https://yunyaniu.blog.csdn.net/article/details/131319010

3.3、部署原始LLaMA系列/Alpaca系列——多卡并行+LoRA技巧、多卡并行+QLoRA技巧

LLMs之Alpaca_LoRA:Alpaca_LoRA简介(痛点/改进)、实战案例—基于CentOS和多卡(A800+并行技术)实现全流程完整复现Alpaca_7B—安装依赖、转换为HF模型文件、模型微调(full fine-turning+LoRA+单卡/多卡)、模型推理(CLI/llama.cpp/Docker封装)图文教程之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131526319

LLMs之LLaMA-7B-QLoRA:基于Alpaca-Lora代码在CentOS和多卡(A800+并行技术)实现全流程完整复现LLaMA-7B—安装依赖、转换为HF模型文件、模型微调(QLoRA+单卡/多卡)、模型推理(对比终端命令/llama.cpp/Docker封装)图文教程之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131526139

3.4、部署Vicuna:权重合并

LLMs:在Linux服务器系统上实Vicuna-7B本地化部署(基于facebookresearch的GitHub)进行模型权重合并(llama-7b模型与delta模型权重)、模型部署且实现模型推理全流程步骤的图文教程(非常详细)

https://yunyaniu.blog.csdn.net/article/details/131016620

3.5、部署ChatGLM2

LLMs之ChatGLM2:ChatGLM2-6B的单机推理(API/CLI/GUI)、低成本部署(GPU量化部署/CPU及其量化部署/Mac部署/多卡部署)有限资源下高效微调(全参/P-tuning v2)、模型评估之图文教程之详细攻略

LLMs之ChatGLM2:ChatGLM2-6B本地部署之单机推理(API/CLI/GUI)、低成本部署(GPU量化部署/CPU及其量化部署/Mac部署/多卡部署)、有限资源下高效微调(全参/P-t_一个处女座的程序猿的博客-CSDN博客

LLMs之ChatGLM:ChatGLM Efficient Tuning(一款高效微调ChatGLM-6B/ChatGLM2-6B的工具【LoRA/P-Tuning V2/Freeze Tuning/全量微调】)的简介、安装、使用方法之详细攻略

LLMs之ChatGLM:ChatGLM Efficient Tuning(一款高效微调ChatGLM-6B/ChatGLM2-6B的工具【LoRA/P-Tunin】)的简介、安装、使用方法之详细攻略_一个处女座的程序猿的博客-CSDN博客

LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM2/LLaMA2/Baichuan等】的高效工具【预训练+指令监督微调+奖励模型训练+PPO 训练+DPO 训练】)的简介、安装、使用方法之详细攻略

LLMs:LLaMA Efficient Tuning(一款可高效微调【全参数/LoRA/QLoRA】主流大模型【ChatGLM2/LLaMA2/Baichuan等】的高效工具【预训练+指令监督微调+_一个处女座的程序猿的博客-CSDN博客

LLMs之ChatGLM2:基于ChatGLM Efficient Tuning(微调工具包)实现对ChatGLM2进行LoRA微调并进行推理测试图文教程之详细攻略

LLMs之ChatGLM2:基于ChatGLM Efficient Tuning(微调工具包)实现对ChatGLM2进行LoRA微调并进行推理测试图文教程之详细攻略_一个处女座的程序猿的博客-CSDN博客

LLMs之ChatGLM2:ChatGLM2-6B本地部署之单机推理(API/CLI/GUI)、低成本部署(GPU量化部署/CPU及其量化部署/Mac部署/多卡部署)、有限资源下高效微调(全参/P-tuning v2)、模型评估和推理之图文教程之详细攻略

LLMs之ChatGLM2:ChatGLM2-6B本地部署之单机推理(API/CLI/GUI)、低成本部署(GPU量化部署/CPU及其量化部署/Mac部署/多卡部署)、有限资源下高效微调(全参/P-t_一个处女座的程序猿的博客-CSDN博客

3.6、部署LLaMA2

LLMs之LLaMA2:基于text-generation-webui工具来本地部署并对LLaMA2模型实现推理执行对话聊天问答任务(一键安装tg webui+手动下载模型+启动WebUI服务)、同时微调LLaMA2模型(采用Conda环境安装tg webui+PyTorch→CLI/GUI下载模型→启动WebUI服务→GUI式+LoRA微调→加载推理)之图文教程详细攻略

LLMs之LLaMA2:基于text-generation-webui工具来本地部署并对LLaMA2模型实现推理执行对话聊天问答任务(一键安装tg webui+手动下载模型+启动WebUI服务)、同时_一个处女座的程序猿的博客-CSDN博客

LLMs之LLaMA2:基于云端进行一键部署对LLaMA2模型实现推理(基于text-generation-webui)执行对话聊天问答任务、同时微调LLaMA2模型(配置云端环境【A100】→下载数据集【datasets】→加载模型【transformers】→分词→模型训练【peft+SFTTrainer+wandb】→基于HuggingFace实现云端分享)之图文教程详细攻略

LLMs之LLaMA2:基于云端进行一键部署对LLaMA2模型实现推理(基于text-generation-webui)执行对话聊天问答任务、同时微调LLaMA2模型(配置云端环境【A100】→下载数_一个处女座的程序猿的博客-CSDN博客

LLMs之LLaMA2:基于LocalGPT利用LLaMA2模型实现本地化的知识库(Chroma)并与本地文档(基于langchain生成嵌入)进行对话问答图文教程+代码详解之详细攻略

LLMs之LLaMA2:基于LocalGPT利用LLaMA2模型实现本地化的知识库(Chroma)并与本地文档(基于langchain生成嵌入)进行对话问答图文教程+代码详解之详细攻略_一个处女座的程序猿的博客-CSDN博客

4、LLMs领域大模型训练与微调经验技巧总结

4.1、方案与流程

LLMs:预训练大模型实现全流程详解(以LLaMA为例)—收集数据→数据预处理→模型训练→模型微调与推理→模型部署之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131332074

LLMs:基于开源大模型实现对中文语料实战应用之两类模型(国外模型方案**等、国内模型方案**等)的设计流程(重在选型思路+核心技术+实现方案)之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131607074

4.2、训练优化技术

MLOPS:大数据/服务器下的大规模机器学习技术—并行计算技术的简介、训练大模型3+分布式并行策略:数据并行DP【MPI/Hadoop】、模型并行MP【Megatron-LM/PaLM】、管道并行PP【多核CPU/GPU】)、两种实现方式(**并行、**并行)之详细攻略

https://yunyaniu.blog.csdn.net/article/details/130312560

PTMs:大模型预训练技巧之ZeRO训练优化技术(DeepSpeed库-减少参数的冗余+优化**分片)的简介(四大核心技术(模型分片/梯度累积/内存优化/分布式训练)、两大优化技术(ZeRO-Offload/ZeRO-Redundancy)、ZeRO3的三个版本(参数分片→**分片→激**分片)、使用方法、案例应用之详细攻略

https://yunyaniu.blog.csdn.net/article/details/129394042

ML之DistributedML:分布式机器学习系统性能优化的简介(分析系统性能瓶颈)、性能调优常用库(CUDA的GPU加速+NCCL多卡通信+RDMA高性能网络传输+分布式系统性能监控)及其使用方法之详细攻略

ML之DML:分布式机器学习系统性能优化的简介(分析系统性能瓶颈)、性能调优常用库(CUDA的GPU加速+NCCL多卡通信+RDMA高性能网络传输+分布式系统性能监控)及其使用方法之详细攻略_一个处女座的程序猿的博客-CSDN博客

4.4.、微调技术

PTMs之PEFT:参数高效微调PEFT方法的简介(只微调少量参数)、Transformer体系结构的核心构建块(大多PEFT方法只依赖基本的MHA+**结构)、分类与比较(加性方法【Adapter-like/****【Prompt Tuning、Prefix-Tuning、IPT】/IA3】/选择方法【Bitfit/Diffpruning/FAR/Fishmask】/基于重参数化方法【I-SAID→LORA→**】/混合方法【SparseAdapter/MAM Adapters/UniPELT/Compacter/**】)、案例实践与总结(有限计算资源下使用和微调/降低超参数敏感性的方法/低秩重参数化)

https://yunyaniu.blog.csdn.net/article/details/130868699

LLMs之Data:指令微调的简介、Self Instruction思想(一种生成指令数据集的方法论—主要用在指令微调阶段)的简介、Alpaca/BELLE应用、实战案例代码实现之详细攻略

LLMs之Data:指令微调的简介、Self Instruction思想(一种生成指令数据集的方法论—主要用在指令微调阶段)的简介、Alpaca/BELLE应用、实战案例代码实现之详细攻略_一个处女座的程序猿的博客-CSDN博客

4.5、训练任务

NLP:自然语言技术领域相关任务分类—七大任务(表示→**提取→**匹配→**分类→**聚类→生成→**问答)、两大层次(五种顶层应用【文本分类/生成/翻译/语音识别/手语识别】+四种底层基本【词法分析/**分析/语义分析/**抽取】)、LLMs四大类(无监督预训练/有监督微调/RL微调/多模态增强)之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131039768

4.6、算法发展

PTMs:预训练大模型算法衍生发展图及其参数对比、基于Transformer的三类基础架构及其代表性算法(BERT/RoBERTa/ALBERT/**/**、GPT/LLaMA系列/**/**、XLNet/BART/T5/**/**)之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131098969

5、LLMs领域大模型落地场景应用的挑战与案例经验总结——横向赋能应用

5.1、RAG场景

LLMs之RAG:知识检索增强生成方法(搭建本地知识库、利用外挂信息库增强LLMs自身能力的一种方法,外部……+LLMs…=知识问答任务)的简介、实现方法(LangChain/等)、案例应用之详细攻略

https://yunyaniu.blog.csdn.net/article/details/130215772

LLMs之RAG:基于LangChain框架利用ChatGPT的API实现一个与在线网页交互的对话机器人—五大思路步骤—加载文档WebBaseLoader网址文件→文档分割(chunk_size=500)→文本嵌入化(OpenAIEmbeddings)并存储到向量库(Chroma)→构造Prompt(拉取一个对象并将其返回为 LangChain对象)→定义LLMs(ChatOpenAI)→输入查询文本来构造RAG chain并利用LLMs生成响应

LLMs之RAG:基于LangChain框架利用ChatGPT的API实现一个与在线网页交互的对话机器人—五大思路步骤—加载文档WebBaseLoader网址文件→文档分割(chunk_size=50-CSDN博客

LLMs之RAG:基于LangChain框架对pdf文件通过创建本地知识库(m3e+FAISS+混合检索)+利用大模型对检索到的上下文信息进行问答生成(LLM及其分词模型选择Qwen-7B-Chat-Int4)=实现一个基于RAG的本地大模型问答程序之详细攻略

https://yunyaniu.blog.csdn.net/article/details/134085808

LLMs之RAG之LangChain-ChatGLM:基于Langchain框架利用Embedding模型(text2vec-large-chinese)+ChatGLM-6B模型(Docker 部署)实现—生成本地知识库(加载文档→读取文档→文档分割/文本分块→文本向量化并存储)→检索【问句Embdding+相似度计算+匹配TopK的promp作为上下文】→组成Context喂给LLMs→大模型实现问答响应(CLI/WebUI/VUE,对话任务/知识库问答/Bing搜索)图文教程之详细攻略

https://yunyaniu.blog.csdn.net/article/details/130998758

LLMs之RAG:LangCha……(一款中文友好的全流程本地知识库问答应用)的简介(支持ChatGLM-2/LLaMA-2等多款主流LLMs+多款embedding模型m3e等+多种TextSplitter分词器)、安装(离线私有部署+支持RTX3090 ,支持FAISS/Milvus/PGVector向量库, FastAPI的API调用服务/基于Streamlit 的WebUI操作)、使用方法(不包括微调/训练,支持LLM对话/知识库问答/搜索引擎问答)之详细攻略

LLMs之RAG:LangChain-Chatchat(一款中文友好的全流程本地知识库问答应用)的简介(支持 FastChat 接入的ChatGLM-2/LLaMA-2等多款主流LLMs+多款embe_一个处女座的程序猿的博客-CSDN博客

LLMs之RAG之Loc……:基于……利用LLaMA-2模型实现本地化的知识库(Chroma)并与本地文档(基于langchain生成嵌入)进行对话问答:加载文档并分割成块生成嵌入获取VDB本地化的知识库(Chroma)→加载本地LLMs→设置问答检索链→基于用户输入获取查询问题+获取问题答案和源文档—图文教程+代码详解之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131693015

等等……太多了,此处只列举几个

5.2、Agent场景

LLMs之Agent:Agent(一种训练LLM模拟人类在现实世界中各种规则和行为系统)的简介、实现案例(LangChain/ChemCrow/Generative Agents/AutoGPT/SuperAGI/GPT-Engineer等)、实战应用之详细攻略

https://yunyaniu.blog.csdn.net/article/details/131255944

2023年1月,Py之Langchain:Langchain(LLM大型语言模型应用程序框架/将LLMs个体进行flow的能力)的简介、安装、使用方法之详细攻略

Py之Langchain:Langchain(LLM大型语言模型应用程序框架/将LLMs个体进行flow的能力)的简介、安装、使用方法之详细攻略-CSDN博客

LLMs之Langchain之Agent:案例集合—利用langchain实现Agent的多种组合工具应用(如调用ChatGPT的API+wikipedia工具+llm-math计算器工具实现实现回答问题任务)

https://yunyaniu.blog.csdn.net/article/details/133256074

2023年4月11日,ChemCrow:专注有机合成、药物发现和材料设计等任务,将CoT推理与任务相关的工具相结合=LLM+13个专业工具+LangChain框架

LLMs之Agent:Agent(一种训练LLM模拟人类在现实世界中各种规则和行为系统)的简介、实现案例(LangChain/ChemCrow/Generative Agents/AutoGPT/Su_一个处女座的程序猿的博客-CSDN博客

2023年4月13日(论文),Generative Agents—基于Agents的虚拟场景模拟:斯坦福的“虚拟小镇”,由25个AI智能体(每个人物都由LLM控制)复现《西部世界》,模拟了25个虚拟人物在《模拟人生》游戏灵感的沙盒环境中生活和互动(基于过去的经验)

LLMs之Agent:Agent(一种训练LLM模拟人类在现实世界中各种规则和行为系统)的简介、实现案例(LangChain/ChemCrow/Generative Agents/AutoGPT/Su_一个处女座的程序猿的博客-CSDN博客

2023年4月16日,AutoGPT—一个有趣的概念验证演示:基于GPT-4驱动的能够自主完成任务的人工智能模型(无需人类的干预)。但是通过自然语言接口操作存在可靠性问题

LLMs之Agent:Agent(一种训练LLM模拟人类在现实世界中各种规则和行为系统)的简介、实现案例(LangChain/ChemCrow/Generative Agents/AutoGPT/Su_一个处女座的程序猿的博客-CSDN博客

2023年5月,SuperAGI是一款开源框架,用于构建、管理和运行有用的自主AI Agent

LLMs之Agent:Agent(一种训练LLM模拟人类在现实世界中各种规则和行为系统)的简介、实现案例(LangChain/ChemCrow/Generative Agents/AutoGPT/Su_一个处女座的程序猿的博客-CSDN博客

2023年6月,GPT-Engineer:根据提示生成整个代码库,其采用LLM进行任务细分和需求澄清

LLMs之Agent:Agent(一种训练LLM模拟人类在现实世界中各种规则和行为系统)的简介、实现案例(LangChain/ChemCrow/Generative Agents/AutoGPT/Su_一个处女座的程序猿的博客-CSDN博客

2023年9月,LLMs之Agent之AutoGen:AutoGen的简介、安装、使用方法之详细攻略

LLMs之Agent之AutoGen:AutoGen的简介、安装、使用方法之详细攻略-CSDN博客

6、LLMs领域大模型落地场景应用的挑战与案例经验总结——纵向赋能场景

​LLMs之Medical:大语言模型纵向赋能场景—垂直行业场景应用之大模型代码场景的简介、主流LLMs(SQLCoder/Code Llama/Ziya-Coding/CodeShell等)及其评估基准(包括数据集)、案例应用之详细攻略

https://yunyaniu.blog.csdn.net/article/details/134193672

LLMs之Law:大语言模型纵向赋能场景—垂直行业场景应用之大模型法律行业的简介、主流LLMs(PowerLawGLM/ChatLaw)、经典应用之详细攻略

LLMs之Law:大语言模型纵向赋能场景—垂直行业场景应用之大模型法律行业的简介、主流LLMs(PowerLawGLM/ChatLaw)、经典应用之详细攻略-CSDN博客

LLMs之Medical:大语言模型纵向赋能场景—垂直行业场景应用之大模型医疗行业的简介、主流LLMs(ChatGLM-Med/ChatDoctor/Radiology-GPT/Qilin-Med等)及其评估基准(包括数据集)、案例应用之详细攻略

LLMs之Medical:大语言模型纵向赋能场景—垂直行业场景应用之大模型医疗行业的简介、主流LLMs(ChatGLM-Med/ChatDoctor/Radiology-GPT/Qilin-Med等)-CSDN博客

AI工具合集综合

一、AI工具产品—文本类集合

分类

简介

官方地址

ChatGPT/

GPT-4

Productivity

ChatGPT:优化语言模型进行对话。对话的格式使ChatGPT回答跟踪问题,承认自己的错误,挑战不正确的前提,并拒绝不适当的请求。

https://chat.openai.com/

Claude

General WritingClaude是Anthropic推出的类ChatGPT对话机器人。而Anthropic是一家由前OpenAI团队成员创立的人工智能初创公司,其目标是开发有用、诚实和无害的AI系统,并且关注未来AI安全和伦理问题。Claude

Jasper

Copywriting

写任何文字材料创建内容与人工智能快10Jasper是最高质量的AI文案工具与3000多名五星级评论。最适合写博客、社交媒体内容和营销复制。

https://jasper.ai

Notion Al

General Writing

笔记AI,利用人工智能的无限的权力在任何页面概念。写得更快,认为大,增强创造力。像魔法一样!

https://affiliate.notion.so/

Al Data Sidekick

Spreadsheets

编写SQL、文档和快10倍与我们集合强大的菜谱。

AirOps | Bring AI to Work

Writesonic

SEO

Writesonic是一个AI作家创造seo友好内容博客、Facebook广告,谷歌广告,免费Shopify。套用工具允许您立即改述整个文章。

Writesonic – Best AI Writer, Copywriting & Paraphrasing Tool

Copy.ai

Copywriting

获得伟大的复制销售。副本。人工智能是一个AI-powered文案,为您的业务生成高质量的副本。开始免费,不需要信用卡!营销简化!

www.copy.ai

Character Al

Avatars

智能代理住的地方!

https://beta.character.ai

Fireflies

Transcriber

智能笔记,人工智能助理为您的会议记录、转录和搜索你的声音对话。

https://fireflies.ai

outplay

Sales

胜过是一个一体化的多渠道销售接触平台,帮助销售团队关闭更多的交易,大大增加收入。

https://outplayhq.com

Cowriter

Copywriting

盯着一个空白的屏幕不累吗?满足你的AI文案可以创建鼓舞人心的创意内容。

https://cowriter.org/

Jenni AI

SEO

写论文

你写珍妮完成超负荷,你的写作与最先进的人工智能写作助理。

https://jenni.ai

二、AI工具产品—图片、绘图类集合

分类

简介

官方地址

Stable DiffusionArtstable diffusion是一种潜在的文本到图像扩散模型,能够在任何文本输入的情况下生成逼真的图像,培养自主自由来产生令人难以置信的图像,使数十亿人能够在几秒钟内创造令人惊叹的艺术。Stable Diffusion Online

Midjourney

Art

人工智能时代的艺术。AI艺术发生器基于stable diffusion。他们的网站将他们描述为“一个独立的实验室探索新的媒介的思想和扩大人类的想象力。

https://www.midjourney.com/home/

Dall-E-2

Image Generator

文字创建图画

达尔·E 2可以创建原始,真实的图片和艺术从文本描述。它可以结合的概念、属性和样式。

https://openai.com
Adobe FireflyArt使用Firefly进行实验、想象并进行无限范围的创作,这是Adobe产品中的一个创意生成AI模型家族。AI Art Generator – Adobe Firefly

PhotorRoom

Image Editing

创造产品和肖像图片只使用你的手机。删除背景,修改背景和展示产品。

https://photoroom.com

Palette.fm

Image Editing

调色AI

着色黑白照片自动,没有注册,和自由!

https://palette.fm

Remove.bg

Image Editing

抠图AI

5秒内自动删除背景100有一个点击。多亏了删除。bg聪明的人工智能,可以削减编辑时间,有更多的乐趣!

https://remove.bg

AutoDraw

Design Assistant

设计AI

Autodraw是一个人工智能工具,允许你画得更快的猜测对象或你打算画形状。

https://autodraw.com

Artbreeder

Art

工艺ai前所未有的艺术

https://www.artbreeder.com

STOCKIMG.Al

Design Assistant

文本与人工智能设计服务。生成标识、图片、海报、书籍封面,更多使用人工智能设计。

https://stockimg.ai/

niji·journey

Art

AI艺术发生器基于稳定的扩散。他们的网站将他们描述为一个独立的实验室探索新的媒介的思想和扩大人类的想象力。

https://www.midjourney.com/home/

getimg

Image Generator

所有你需要创建与人工智能图像。神奇的AI艺术工具。生成原创图片,修改现有的,扩大它昔日国界之外的照片,等等。

https://getimg.ai

dreamlike.art

Art

创造惊人的原始艺术在几秒钟内用人工智能的力量。神奇的人工智能工具。创造无尽的原始图像,修改现有的,和更多。

https://dreamlike.art

Phygital+

Phygital(物理加数字)是一个营销术语,指将数字体验与物理体验相结合。

Phygital: What It Is and Why It Is Evolving the Customer Experience – MJV

b.Beautiful Al

Beautiful.ai 是最适合团队的演示软件。坚持品牌,提升您的演示文稿设计,并在世界任何地方进行协作。

Presentation Software | Basic to Beautiful in Minutes with Beautiful.ai

三、AI工具产品—PPT类办公集合

分类

简介

官方地址

Tome

PPT

做PPT的AI

来见见Tome,你的人工智能
讲故事的伙伴。

Tome – The AI-powered storytelling format

Microsoft 365 CopilotPPT、ExcelMicrosoft 365 应用汇集了你喜欢的所有高效办公应用和内容。其中包括你所喜欢的 Office 应用中的所有内容,但拥有新的外观和名称,并添加了智能功能,可帮助你在同一个位置进行创建、共享和协作。How To Use Microsoft 365 Copilot: Features, Price, And More – Dataconomy
GammaPPT一种由人工智能驱动的表达想法的新媒介。创建漂亮的,吸引人的内容,没有格式和设计工作。Gamma App
PromptLoopExcel一个简单的电子表格公式的人工智能
使用谷歌Sheets和Excel中的PromptLoop构建电子表格模型,使用我们的AI模型转换、提取或总结任何文本。该公式的设计就像SUM或VLOOKUP,并使用强大的人工智能模型生成答案。
PromptLoop | AI in Google Sheets™ and Excel™ with a single formula
Excel Formula BotExcel借助 AI 免费在几秒钟内将您的文本指令转换为 Excel 公式。 在几秒钟内高度精通 Excel。工作更快更聪明。 “Excel 的游戏规则改变者”- BGR.comExcel & Google Sheets AI Formula Bot Generator – Excelformulabot.com

四、AI工具产品—代码编程类集合

分类

简介

官方地址

GitHub Copilotcode微软与OpenAI共同推出了一款AI编程工具GitHub Copilot。GitHub Copilot 可以通过提供自动完成式建议来帮助您编码。GitHub Copilot是一个AI配对程序员,在你编码时提供自动完成风格的建议。https://yunyaniu.blog.csdn.net/article/details/125567069
Codeiumcode使用CodiumAI,您可以在IDE中获得重要的测试建议(也很重要!),因此您可以智能编码,创造更多价值,并在执行时保持自信。
代码,就像你说的。
Meaningful Code Tests for Busy Devs | CodiumAI

五、AI工具产品—音频类集合

分类

简介

官方地址

Brain.fm

科学证明可以提高注意力的音乐
事半功倍,在需要的时候展现最好的自己。

Music to Focus Better – Brain.fm

Soundraw

Ai音乐生成器的创造者
不要再寻找你需要的歌曲了。
创建它。
免版税的音乐,AI为你生成

AI Music Generator – SOUNDRAW

Endel

Music

个性化的音景帮助你集中注意力,放松,睡眠。神经科学的支持。

https://endel.io

Riffusion

Music

Riffusion生成音乐从文本提示。尝试你喜欢的风格,乐器萨克斯或小提琴,修饰符像阿拉伯语或牙买加,流派像爵士乐或福音,听起来就像教堂的钟声或雨,或任何组合

https://riffusion.com

Papercup

Video Editing

发现更快、更实惠的自动化的配音和走出去与你现有的视频内容。使用人工智能在英语配音内容,西班牙、葡萄牙和意大利。他们所使用的公司像BBC,天空新闻和内幕。

https://papercup.com

LALAL Al

Murf

Text To Speech

文字转语音从文本到语音的多功能人工智能语音生成器AI-enabled,真实的人的声音让studio-quality画外音在几分钟内。使用Murf播客的栩栩如生的AI声音,视频,和你专业的演示

https://murf.ai

PolyAl

voice mode

Boomy

Music

使即时音乐和与世界分享。在秒创造原创歌曲,即使你从未用过的音乐。得到每一个监听平台像Spotify, TikTok, YouTube

https://boomy.com

Mubert

Music

Mubert生态系统——新免版税的音乐内容创造者,品牌和开发者馃敟。来看看我们的高质量的音乐可以提升你的内容。

https://mubert.com

六、AI工具产品—视频类集合

分类

简介

官方地址

Runaway

gen-2

一句话生成视频

你需要的一切,来制作你想要的任何东西。
Runway是一种新型的创意套件。在这里,人工智能是一个合作者,你能想象的任何东西都可以被创造出来。

Runway – Everything you need to make anything you want.

Synthesia

Video Generator

创造人工智能视频,只需键入文本。易于使用、廉价和可伸缩的。让视频与人类接触主持人——直接从您的浏览器。免费演示。

https://synthesia.io

Pollinations

Image Generator

授粉想多元化创意和传播通过数字生态系统。无论是在图像、视频或音频,我们邀请人们想象新世界AI的帮助下。对于企业来说,我们的开发人员编写代码上最新的人工智能模型,提供定制的结果和特定的美学。API,创造人工智能可以集成直接在网站和社交媒体平台。创建变得简单、快速和有趣。

https://pollinations.ai

ZUBTITL

在几分钟内为社交媒体制作精彩视频 Zubtitle 的简单在线编辑器可帮助您为视频添加字幕、修剪和重新调整用途,只需单击几下。

Zubtitle – Add Subtitles to Videos & Edit Videos Online

Munch

Video Editing

自动把长篇视频为社交媒体数据驱动的短片。蒙克产生接触和参与通过从TikTok收获最高利益,搞笑,欧美,facebook用户和应用AI-generated剪辑。

https://getmunch.com

Fliki

Video Generator

从脚本创建视频在2分钟或博客文章使用真实的声音!博客文章转换成视频。栩栩如生的语音的声音。丰富的媒体库。

https://fliki.ai

Peech

Video Generator

把你的内容团队变成不可阻挡的创造者。自动转录,编辑、重新和品牌你的视频内容所有在一个地方和大规模生产的视频内容。

https://peech-ai.com

DreamFace

D-ID

Video Generator

世界上第一个平台结合GPT-3,稳定的扩散,D-ID独特的人脸动画技术。我们的生殖AI会把你的梦想变成一个说《阿凡达》在几秒钟内。

https://studio.d-id.com

gen-2(一句话生成视频)

超级人工智能机器人正在教会人类如何写好代码
Super Al robots are teaching humans to code well

七、AI工具产品—多模态类集合

分类

简介

官方地址

AgentGPT

通过AgentGPT配置和部署“Autonomous AI agent”。命名你的自定义AI,让它开始任何你能想到的目标。它会通过思考要做的任务,执行它们,并从结果中学习来试图达到目标

AgentGPT

AutoGPT

Auto-GPT 是一个实验性开源应用程序,展示了 GPT-4 语言模型的功能。该程序由 GPT-4 驱动,将 LLM 的“思想”链接在一起,以自主实现您设定的任何目标。作为 GPT-4 完全自主运行的首批示例之一,Auto-GPT 突破了 AI 的可能性界限。

https://github.com/Torantulino/Auto-GPT

Synthesia

创建数字人

在 15 分钟内制作专业视频 只需用 120 多种语言输入您的文本 无需设备或视频编辑技能 节省多达 80% 的时间和预算

Synthesia | #1 AI Video Generation Platform

Chatbot live

多用途聊天机器人

Live AI Chatbot Demos

文心一言

百度全新一代知识增强大语言模型,文心大模型家族的新成员,能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。

https://ai-bot.cn/

Cascadeur

Cascadeur 是一款独立的 3D 动画软件,用于创建 3D 角色、人形或其他角色的关键帧动画。从头开始制作逼真的 3D 动画或改进动作捕捉,同时保留对结果的完全控制。

Cascadeur — 3D animation software – Godot Community Forums

国内外网友提供的AI工具集导航栏(请网友自行鉴别网址安全性)

备注:大家在进入以下国内外网友,所提供的网址时,切记,一定要注意查看网址是否安全哦!

1、500+ AI工具导航大全,国内外AI工具集合网站

网址:AI工具集导航 | 500+ AI工具导航大全,国内外AI工具集合网站

2、互联网前3000+人工智能工具

网址:https://aitoptools.com/

3、AI导航网 | 收录优质AI人工智能项目,与你一起遇见未来!

网址:AI导航网 | 收录优质AI人工智能项目,与你一起遇见未来!

4、AI导航 – AI人工智能工具导航 | 工具达人

网址:AI导航 – AI人工智能工具导航 | 工具达人

5、AI工具层出不穷,做一个善假于物者,了解它,学习它,应用它

网址:AI中文|AI工具集导航|AI工具导航大全|收录好用的AI工具 | AI工具层出不穷,做一个善假于物者,了解它,学习它,应用它

6、发现全球优质AIGC工具,与创作者一同成长

网址:AIGC工具导航 | 发现全球优质AIGC工具,与创作者一同成长

7、Ai导航 | 最新最前沿的ai产品

网址:Ai导航 | 最新最前沿的ai产品

8、AI导航网 – 人工智能领域的导航网站

网址:AINAV.cn—AI导航网 – 人工智能领域的导航网站