目录
- 0 专栏介绍
- 1 多项式插值
- 2 多项式插值轨迹规划
- 3 算法仿真
- 3.1 ROS C++仿真
- 3.2 Python仿真
- 3.3 Matlab仿真
0 专栏介绍
附C++/Python/Matlab全套代码课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。
详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法
1 多项式插值
多项式插值(polynomial interpolation)基于一元多项式进行曲线插值,可以保证微分约束的连续性,使轨迹平滑、机械冲击小。多项式插值的应用场景非常广泛,例如
- 信号处理:在数字信号处理中,多项式插值可以用于重建缺失的信号数据,如图像或音频;
- 数据拟合:在数据分析中,多项式插值可以用于拟合数据,从而探究变量之间的关系;
- 数值微积分:在求解微积分问题时,多项式插值可以用于计算积分或导数,因为它可以在给定区间内精确地近似函数;
- 工程设计:多项式插值可以用于工程设计中的机器人轨迹规划、飞行器控制等领域,因为它可以通过已知的起点和终点来生成平滑的路径
必须指出,当使用等距多项式插值时,随着多项式阶数升高,可能造成函数解析区间过小,产生龙格现象(runge phenomenon):插值两端产生剧烈振荡。因此多项式插值一般采用三次、五次或七次。
2 多项式插值轨迹规划
对路径进行多项式插值时,需要给定机器人在首末位置的位姿以及速度、加速度等微分项作为约束条件。若要求在时间 t0 t_0t0内经过两个路径点 θ (0) \boldsymbol{\theta }\left( 0 \right)θ(0)、 θ ( t 0) \boldsymbol{\theta }\left( t_0 \right)θ(t0),再考虑首末点的速度约束θ ˙(0) \boldsymbol{\dot{\theta}}\left( 0 \right)θ˙(0)、θ ˙( t 0) \boldsymbol{\dot{\theta}}\left( t_0 \right)θ˙(t0)共四个自由度,由三次多项式可完全确定
θ ( t )= a 0+ a 1t+ a 2 t 2+ a 3 t 3\boldsymbol{\theta }\left( t \right) =\boldsymbol{a}_0+\boldsymbol{a}_1t+\boldsymbol{a}_2t^2+\boldsymbol{a}_3t^3 θ(t)=a0+a1t+a2t2+a3t3
其中多项式系数由位置约束和速度约束确定
[ θ ( 0 )θ ( t0) θ˙( 0 ) θ˙( t0)]= [ 1 0 0 0 1 t0t02t030 1 0 0 0 1 2 t 03 t 0 2] [ a0a1a2a3] ⇔ [ a0a1a2a3]= [ θ ( 0 ) θ˙( 0 ) 3 t02[ θ ( t 0)− θ (0)]− 2 t0θ˙( 0 )− 1 t0θ˙( t0)− 2 t03[ θ ( t 0)− θ (0)]+ 1 t02[θ ˙(0)−θ ˙( t 0)]]\left[ \begin{array}{c} \boldsymbol{\theta }\left( 0 \right)\\ \boldsymbol{\theta }\left( t_0 \right)\\ \boldsymbol{\dot{\theta}}\left( 0 \right)\\ \boldsymbol{\dot{\theta}}\left( t_0 \right)\\\end{array} \right] =\left[ \begin{matrix} 1& 0& 0& 0\\ 1& t_0& t_{0}^{2}& t_{0}^{3}\\ 0& 1& 0& 0\\ 0& 1& 2t_0& 3t_{0}^{2}\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{a}_0\\ \boldsymbol{a}_1\\ \boldsymbol{a}_2\\ \boldsymbol{a}_3\\\end{array} \right] \\ \Leftrightarrow \left[ \begin{array}{c} \boldsymbol{a}_0\\ \boldsymbol{a}_1\\ \boldsymbol{a}_2\\ \boldsymbol{a}_3\\\end{array} \right] =\left[ \begin{array}{c} \boldsymbol{\theta }\left( 0 \right)\\ \boldsymbol{\dot{\theta}}\left( 0 \right)\\ \frac{3}{t_{0}^{2}}\left[ \boldsymbol{\theta }\left( t_0 \right) -\boldsymbol{\theta }\left( 0 \right) \right] -\frac{2}{t_0}\boldsymbol{\dot{\theta}}\left( 0 \right) -\frac{1}{t_0}\boldsymbol{\dot{\theta}}\left( t_0 \right)\\ -\frac{2}{t_{0}^{3}}\left[ \boldsymbol{\theta }\left( t_0 \right) -\boldsymbol{\theta }\left( 0 \right) \right] +\frac{1}{t_{0}^{2}}\left[ \boldsymbol{\dot{\theta}}\left( 0 \right) -\boldsymbol{\dot{\theta}}\left( t_0 \right) \right]\\\end{array} \right] θ(0)θ(t0)θ˙(0)θ˙(t0) = 11000t0110t0202t00t0303t02 a0a1a2a3 ⇔ a0a1a2a3 = θ(0)θ˙(0)t023[θ(t0)−θ(0)]−t02θ˙(0)−t01θ˙(t0)−t032[θ(t0)−θ(0)]+t021[θ˙(0)−θ˙(t0)]
再考虑首末点的加速度约束θ ¨(0) \boldsymbol{\ddot{\theta}}\left( 0 \right)θ¨(0)、θ ¨( t 0) \boldsymbol{\ddot{\theta}}\left( t_0 \right)θ¨(t0)共六个自由度,由五次多项式曲线可完全确定
θ ( t )= a 0+ a 1t+ a 2 t 2+ a 3 t 3+ a 4 t 4+ a 5 t 5\boldsymbol{\theta }\left( t \right) =\boldsymbol{a}_0+\boldsymbol{a}_1t+\boldsymbol{a}_2t^2+\boldsymbol{a}_3t^3+\boldsymbol{a}_4t^4+\boldsymbol{a}_5t^5 θ(t)=a0+a1t+a2t2+a3t3+a4t4+a5t5
其中多项式系数由位置约束、速度约束和加速度约束确定
[ θ ( 0 )θ ( t0) θ˙( 0 ) θ˙( t0) θ¨( 0 ) θ¨( t0)]= [ l10 0 0 0 0 1 t0t02t03t04t050 1 0 0 0 0 0 1 2 t 03 t 0 24 t 0 35 t 0 40 0 2 0 0 0 0 0 2 6 t 012 t 0 220 t 0 3] [ a0a1a2a3a4a5] ⇔ [ a0a1a2a3a4a5]= [ θ ( 0 ) θ˙( 0 ) 1 2 θ¨( 0 ) 10 t03[ θ ( t 0)− θ (0)]− 1 t02[ 4θ ˙( t 0)+ 6θ ˙(0)]+ 1 2 t 0[θ ¨( t 0)− 3θ ¨(0)] −15t04[ θ ( t 0)− θ (0)]+ 1 t03[ 7θ ˙( t 0)+ 8θ ˙(0)]− 1 2 t 0 2[ 2θ ¨( t 0)− 3θ ¨(0)] 6 t05[ θ ( t 0)− θ (0)]− 1 t04[ 3θ ˙( t 0)+ 3θ ˙(0)]+ 1 2 t 0 3[θ ¨( t 0)−θ ¨(0)]]\left[ \begin{array}{c} \boldsymbol{\theta }\left( 0 \right)\\ \boldsymbol{\theta }\left( t_0 \right)\\ \boldsymbol{\dot{\theta}}\left( 0 \right)\\ \boldsymbol{\dot{\theta}}\left( t_0 \right)\\ \boldsymbol{\ddot{\theta}}\left( 0 \right)\\ \boldsymbol{\ddot{\theta}}\left( t_0 \right)\\\end{array} \right] =\left[ \begin{matrix}{l} 1& 0& 0& 0& 0& 0\\ 1& t_0& t_{0}^{2}& t_{0}^{3}& t_{0}^{4}& t_{0}^{5}\\ 0& 1& 0& 0& 0& 0\\ 0& 1& 2t_0& 3t_{0}^{2}& 4t_{0}^{3}& 5t_{0}^{4}\\ 0& 0& 2& 0& 0& 0\\ 0& 0& 2& 6t_0& 12t_{0}^{2}& 20t_{0}^{3}\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{a}_0\\ \boldsymbol{a}_1\\ \boldsymbol{a}_2\\ \boldsymbol{a}_3\\ \boldsymbol{a}_4\\ \boldsymbol{a}_5\\\end{array} \right]\\ \Leftrightarrow \left[ \begin{array}{c} \boldsymbol{a}_0\\ \boldsymbol{a}_1\\ \boldsymbol{a}_2\\ \boldsymbol{a}_3\\ \boldsymbol{a}_4\\ \boldsymbol{a}_5\\\end{array} \right] =\left[ \begin{array}{c} \boldsymbol{\theta }\left( 0 \right)\\ \boldsymbol{\dot{\theta}}\left( 0 \right)\\ \frac{1}{2}\boldsymbol{\ddot{\theta}}\left( 0 \right)\\ \frac{10}{t_{0}^{3}}\left[ \boldsymbol{\theta }\left( t_0 \right) -\boldsymbol{\theta }\left( 0 \right) \right] -\frac{1}{t_{0}^{2}}\left[ 4\boldsymbol{\dot{\theta}}\left( t_0 \right) +6\boldsymbol{\dot{\theta}}\left( 0 \right) \right] +\frac{1}{2t_0}\left[ \boldsymbol{\ddot{\theta}}\left( t_0 \right) -3\boldsymbol{\ddot{\theta}}\left( 0 \right) \right]\\ \frac{-15}{t_{0}^{4}}\left[ \boldsymbol{\theta }\left( t_0 \right) -\boldsymbol{\theta }\left( 0 \right) \right] +\frac{1}{t_{0}^{3}}\left[ 7\boldsymbol{\dot{\theta}}\left( t_0 \right) +8\boldsymbol{\dot{\theta}}\left( 0 \right) \right] -\frac{1}{2t_{0}^{2}}\left[ 2\boldsymbol{\ddot{\theta}}\left( t_0 \right) -3\boldsymbol{\ddot{\theta}}\left( 0 \right) \right]\\ \frac{6}{t_{0}^{5}}\left[ \boldsymbol{\theta }\left( t_0 \right) -\boldsymbol{\theta }\left( 0 \right) \right] -\frac{1}{t_{0}^{4}}\left[ 3\boldsymbol{\dot{\theta}}\left( t_0 \right) +3\boldsymbol{\dot{\theta}}\left( 0 \right) \right] +\frac{1}{2t_{0}^{3}}\left[ \boldsymbol{\ddot{\theta}}\left( t_0 \right) -\boldsymbol{\ddot{\theta}}\left( 0 \right) \right]\\\end{array} \right] θ(0)θ(t0)θ˙(0)θ˙(t0)θ¨(0)θ¨(t0) = l1100000t011000t0202t0220t0303t0206t00t0404t03012t020t0505t04020t03 a0a1a2a3a4a5 ⇔ a0a1a2a3a4a5 = θ(0)θ˙(0)21θ¨(0)t0310[θ(t0)−θ(0)]−t021[4θ˙(t0)+6θ˙(0)]+2t01[θ¨(t0)−3θ¨(0)]t04−15[θ(t0)−θ(0)]+t031[7θ˙(t0)+8θ˙(0)]−2t021[2θ¨(t0)−3θ¨(0)]t056[θ(t0)−θ(0)]−t041[3θ˙(t0)+3θ˙(0)]+2t031[θ¨(t0)−θ¨(0)]
若考虑更多时间微分约束,则需要更高次数的多项式曲线,但多项式阶数的升高会影响计算效率,从而降低实时性。
3 算法仿真
3.1 ROS C++仿真
核心代码如下所示
Poly::Poly(std::tuple<double, double, double> state_0, std::tuple<double, double, double> state_1, double t){double x0, v0, a0;double xt, vt, at;std::tie(x0, v0, a0) = state_0;std::tie(xt, vt, at) = state_1;Eigen::Matrix3d A;A << std::pow(t, 3), std::pow(t, 4), std::pow(t, 5), 3 * std::pow(t, 2), 4 * std::pow(t, 3), 5 * std::pow(t, 4),6 * t, 12 * std::pow(t, 2), 20 * std::pow(t, 3);Eigen::Vector3d b(xt - x0 - v0 * t - a0 * t * t / 2, vt - v0 - a0 * t, at - a0);Eigen::Vector3d x = A.lu().solve(b);// Quintic polynomial coefficientp0 = x0;p1 = v0;p2 = a0 / 2.0;p3 = x(0);p4 = x(1);p5 = x(2);}
这部分实现的是五次多项式的系数计算
在轨迹规划过程中,只需要遍历路径点,在相邻路径点间进行插值即可
bool Polynomial::run(const Poses2d points, Points2d& path){if (points.size() < 4)return false;else{path.clear();// generate velocity and acceleration constraints heuristicallystd::vector<double> v(points.size(), 1.0);v[0] = 0.0;std::vector<double> a;for (size_t i = 0; i < points.size() - 1; i++)a.push_back((v[i + 1] - v[i]) / 5);a.push_back(0.0);for (size_t i = 0; i < points.size() - 1; i++){PolyTrajectory traj;PolyState start(std::get<0>(points[i]), std::get<1>(points[i]), std::get<2>(points[i]), v[i], a[i]);PolyState goal(std::get<0>(points[i + 1]), std::get<1>(points[i + 1]), std::get<2>(points[i + 1]), v[i + 1], a[i + 1]);generation(start, goal, traj);Points2d path_i = traj.toPath();path.insert(path.end(), path_i.begin(), path_i.end());}return !path.empty();}}
3.2 Python仿真
核心代码如下所示
class Poly:'''Polynomial interpolation solver'''def __init__(self, state0: tuple, state1: tuple, t: float) -> None:x0, v0, a0 = state0xt, vt, at = state1A = np.array([[t ** 3, t ** 4, t ** 5],[3 * t ** 2, 4 * t ** 3, 5 * t ** 4],[6 * t, 12 * t ** 2, 20 * t ** 3]])b = np.array([xt - x0 - v0 * t - a0 * t ** 2 / 2,vt - v0 - a0 * t,at - a0])X = np.linalg.solve(A, b)# Quintic polynomial coefficientself.p0 = x0self.p1 = v0self.p2 = a0 / 2.0self.p3 = X[0]self.p4 = X[1]self.p5 = X[2]
3.3 Matlab仿真
核心代码如下所示
for T = param.t_min : param.step : param.t_maxA = [power(T, 3), power(T, 4), power(T, 5);3 * power(T, 2), 4 * power(T, 3), 5 * power(T, 4);6 * T, 12 * power(T, 2), 20 * power(T, 3)];b = [gx - sx - sv_x * T - sa_x * T * T / 2;gv_x - sv_x - sa_x * T;ga_x - sa_x];X = A \ b;px = [sx, sv_x, sa_x / 2, X(1), X(2), X(3)];b = [gy - sy - sv_y * T - sa_y * T * T / 2;gv_y - sv_y - sa_y * T;ga_y - sa_y];X = A \ b;py = [sy, sv_y, sa_y / 2, X(1), X(2), X(3)];for t=0 : param.dt : T + param.dttraj_x = [traj_x, x(px, t)];traj_y = [traj_y, x(py, t)];vx = dx(px, t); vy = dx(py, t);traj_v = [traj_v, hypot(vx, vy)];ax = ddx(px, t); ay = ddx(py, t);a = hypot(ax, ay);if (length(traj_v) >= 2) && (traj_v(end) < traj_v(end - 1))a = -a;endtraj_a = [traj_a, a];jx = dddx(px, t); jy = dddx(py, t);j = hypot(jx, jy);if (length(traj_a) >= 2) && (traj_a(end) < traj_a(end - 1))j = -j;endtraj_j = [traj_j, j];endif ((max(abs(traj_a)) < param.max_acc) && (max(abs(traj_j)) < param.max_jerk))break;elsetraj_x = []; traj_y = [];traj_v = []; traj_a = []; traj_j = [];endend
完整工程代码请联系下方博主名片获取
更多精彩专栏:
- 《ROS从入门到精通》
- 《Pytorch深度学习实战》
- 《机器学习强基计划》
- 《运动规划实战精讲》
- …
源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系