需要源码和数据集请点赞关注收藏后评论区留言私信~~~

一、数据集简介

下面用到的数据集基于IAM数据集的英文手写字体自动识别应用,IAM数据库主要包含手写的英文文本,可用于训练和测试手写文本识别以及执行作者的识别和验证,该数据库在ICDAR1999首次发布,并据此开发了基于隐马尔可夫模型的手写句子识别系统,并于ICPR2000发布,IAM包含不受约束的手写文本,以300dpi的分辨率扫描并保存为具有256级灰度的PNG图像,IAM手写数据库目前最新的版本为3.0,其主要结构如下

约700位作家贡献笔迹样本

超过1500页扫描文本

约6000个独立标记的句子

超过一万行独立标记的文本

超过十万个独立标记的空间

展示如下 有许多张手写照片

二、实现步骤

1:数据清洗

删除文件中备注说明以及错误结果,统计正确笔迹图形的数量,最后将整理后的数据进行随机无序化处理

2:样本分类

接下来对数据进行分类 按照8:1:1的比例将样本数据集分为三类数据集,分别是训练数据集 验证数据集和测试数据集,针对训练数据集进行训练可以获得模型,而测试数据集主要用于测试模型的有效性

3:实现字符和数字映射

利用Tensorflow库的Keras包的StringLookup函数实现从字符到数字的映射 主要参数说明如下

max_tokens:单词大小的最大值

num_oov_indices:out of vocabulary的大小

mask_token:表示屏蔽输入的大小

oov_token:仅当invert为True时使用 OOV索引的返回值 默认为UNK

4:进行卷积变化

通过Conv2D函数实现二维卷积变换 主要参数说明如下

filters:整数值 代表输出空间的维度

kernel_size:一个整数或元组列表 指定卷积窗口的高度和宽度

strides:一个整数或元组列表 指定卷积沿高度和宽度的步幅

padding:输出图像的填充方式

activation:激活函数

三、效果展示

读取部分手写样本的真实文本信息如下

训练结束后 得到训练模型 导入测试手写文本数据 进行手写笔迹预测 部分结果如下

四、结果总结

观察预测结果可知,基于均值池化以及训练过程预警极值,大部分的英文字符能够得到准确的预测判定,训练的精度持续得到改善,损失值控制在比较合理的区间内,没有发生预测准确度连续多次无法改进的场景,模型稳定性较好

五、代码

部分代码如下 需要全部代码请点赞关注收藏后评论区留言私信~~~

from tensorflow.keras.layers.experimental.preprocessing import StringLookupfrom tensorflow import kerasimport matplotlib.pyplot as pltimport tensorflow as tfimport numpy as npimport osplt.rcParams['font.family'] = ['Microsoft YaHei']np.random.seed(0)tf.random.set_seed(0)# ## 切分数据# In[ ]:corpus_read = open("data/words.txt", "r").readlines()corpus = []length_corpus=0for word in corpus_read:if lit(" ")[1] == "ok"):corpus.append(word)np.random.shuffle(corpus)length_corpus=len(corpus)print(length_corpus)corpus[400:405]# 划分数据,按照 80:10:10 比例分配给训练:有效:测试 数据# In[ ]:train_flag = int(0.8 * len(corpus))test_flag = int(0.9 * len(corpus))train_data = corpus[:train_flag]validation_data = corpus[train_flag:test_flag]test_data = corpus[test_flag:]train_data_len=len(train_data)validation_data_len=len(validation_data)test_data_len=len(test_data)print("训练样本大小:", train_data_len)print("验证样本大小:", validation_data_len)print("测试样本大小:",test_data_len )# In[ ]:image_direct = "data\images"def retrieve_image_info(data):image_location = []sample = []for (i, corpus_row) in enumerate(data):corpus_strip = corpus_row.strip()corpus_strip = corpus_strip.split(" ")image_name = corpus_strip[0]leve1 = image_name.split("-")[0]leve2 = image_name.split("-")[1]image_location_detail = os.path.join(image_direct, leve1, leve1 + "-" + leve2, image_name + ".png")if os.path.getsize(image_location_detail) >0 :image_location.append(image_location_detail)sample.append(corpus_row.split("\n")[0])print("手写图像路径:",image_location[0],"手写文本信息:",sample[0])return image_location, sampletrain_image, train_tag = retrieve_image_info(train_data)validation_image, validation_tag = retrieve_image_info(validation_data)test_image, test_tag = retrieve_image_info(test_data)# In[ ]:# 查找训练数据词汇最大长度train_tag_extract = []vocab = set()max_len = 0for tag in train_tag:tag = tag.split(" ")[-1].strip()for i in tag:vocab.add(i)max_len = max(max_len, len(tag))train_tag_extract.append(tag)print("最大长度: ", max_len)print("单词大小: ", len(vocab))print("单词内容: ", vocab)train_tag_extract[40:45]# In[ ]:print(train_tag[50:54])print(validation_tag[10:14])print(test_tag[80:84])def extract_tag_info(tags):extract_tag = []for tag in tags:tag = tag.split(" ")[-1].strip()extract_tag.append(tag)return extract_tagtrain_tag_tune = extract_tag_info(train_tag)validation_tag_tune = extract_tag_info(validation_tag)test_tag_tune = extract_tag_info(test_tag)print(train_tag_tune[50:54])print(validation_tag_tune[10:14])print(test_tag_tune[80:84])# In[ ]:AUTOTUNE = tf.data.AUTOTUNE# 映射单词到数字string_to_no = StringLookup(vocabulary=list(vocab),invert=False)# 映射数字到单词no_map_string = StringLookup(vocabulary=string_to_no.get_vocabulary(),invert=True)# In[ ]:def distortion_free_resize(image, img_size):w, h = img_sizeimage = tf.image.resize(image, size=(h, w), preserve_aspect_ratio=True, antialias=False, name=None)# 计算填充区域大小pad_height = h - tf.shape(image)[0]pad_width = w - tf.shape(image)[1] if pad_height % 2 != 0:height = pad_height // 2pad_height_top = height + 1pad_height_bottom = heightelse:pad_height_top = pad_height_bottom = pad_height // 2if pad_width % 2 != 0:width = pad_width // 2pad_width_left = width + 1pad_width_right = widthelse:pad_width_left = pad_width_right = pad_width // 2image = tf.pad(image,paddings=[[pad_height_top, pad_height_bottom],[pad_width_left, pad_width_right],[0, 0],],)image = tf.transpose(image, perm=[1, 0, 2])image = tf.image.flip_left_right(image)return image# In[ ]:batch_size = 64padding_token = 99image_width = 128image_height = 32def preprocess_image(image_path, img_size=(image_width, image_height)):image = tf.io.read_file(image_path)image = tf.image.decode_png(image, 1)image = distortion_free_resize(image, img_size)image = tf.cast(image, tf.float32) / 255.0return imagedef vectorize_tag(tag):tag = string_to_no(tf.strings.unicode_split(tag, input_encoding="UTF-8"))length = tf.shape(tag)[0]pad_amount = max_len - lengthtag = tf.pad(tag, paddings=[[0, pad_amount]], constant_values=padding_token)return tagdef process_images_tags(image_path, tag):image = preprocess_image(image_path)tag = vectorize_tag(tag)return {"image": image, "tag": tag}def prepare_dataset(image_paths, tags):dataset = tf.data.Dataset.from_tensor_slices((image_paths, tags)).map(process_images_tags, num_parallel_calls=AUTOTUNE)return dataset.batch(batch_size).cache().prefetch(AUTOTUNE)# In[ ]:train_final = prepare_dataset(train_image, train_tag_extract )validation_final = prepare_dataset(validation_image, validation_tag_tune )test_final = prepare_dataset(test_image, test_tag_tune )print(train_final.take(1))print(train_final)# In[ ]:plt.rcParams['font.family'] = ['Microsoft YaHei']for data in train_final.take(1):images, tags = data["image"], data["tag"]_, ax = plt.subplots(4, 4, figsize=(15, 8))for i in range(16):img = images[i]img = tf.image.flip_left_right(img)img = tf.transpose(img, perm=[1, 0, 2])img = (img * 255.0).numpy().clip(0, 255).astype(np.uint8)img = img[:, :, 0]tag = tags[i]indices = tf.gather(tag, tf.where(tf.math.not_equal(tag, padding_token))) tag = tf.strings.reduce_join(no_map_string(indices))tag = tag.numpy().decode("utf-8")ax[i // 4, i % 4].imshow(img)ax[i // 4, i % 4].set_title(u"真实文本:%s"%tag)ax[i // 4, i % 4].axis("on")plt.show()# In[ ]:class CTCLoss(keras.layers.Layer):def call(self, y_true, y_pred):batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")tag_length = tf.cast(tf.shape(y_true)[1], dtype="int64")input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")tag_length = tag_length * tf.ones(shape=(batch_len, 1), dtype="int64") loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, tag_length)self.add_loss(loss)return lossdef generate_model():# Inputs to the modelinput_img = keras.Input(shape=(image_width, image_height, 1), name="image")tags = keras.layers.Input(name="tag", shape=(None,))# First conv block.t = keras.layers.Conv2D(filters=32,kernel_size=(3, 3),activation="relu",kernel_initializer="he_normal",padding="same",name="ConvolutionLayer1")(input_img)t = keras.layers.AveragePooling2D((2, 2), name="AveragePooling_one")(t)# Second conv block.t = keras.layers.Conv2D(filters=64,kernel_size=(3, 3),activation="relu",kernel_initializer="he_normal",padding="same",name="ConvolutionLayer2")(t)t = keras.layers.AveragePooling2D((2, 2), name="AveragePooling_two")(t)#re_shape = (t,[(image_width // 4), -1])#tf.dtypes.cast(t, tf.int32)re_shape = ((image_width // 4), (image_height // 4) * 64)t = keras.layers.Reshape(target_shape=re_shape, name="reshape")(t)t = keras.layers.Dense(64, activation="relu", name="denseone",use_bias=False,kernel_initializer='glorot_uniform',bias_initializer='zeros')(t)t = keras.layers.Dropout(0.4)(t)# RNNs.t = keras.layers.Bidirectional(keras.layers.LSTM(128, return_sequences=True, dropout=0.4))(t)t = keras.layers.Bidirectional(keras.layers.LSTM(64, return_sequences=True, dropout=0.4))(t)t = keras.layers.Dense(len(string_to_no.get_vocabulary())+2, activation="softmax", name="densetwo")(t)# Add CTC layer for calculating CTC loss at each step.output = CTCLoss(name="ctc_loss")(tags, t)# Define the model.model = keras.models.Model(inputs=[input_img, tags], outputs=output, name="handwriting")# Optimizer.# Compile the model and return.model.compile(optimizer=keras.optimizers.Adam())return model# Get the model.model = generate_model()model.summary()# In[ ]:validation_images = []validation_tags = []for batch in validation_final: validation_images.append(batch["image"])validation_tags.append(batch["tag"])# In[ ]:#epochs = 20 model = generate_model()prediction_model = keras.models.Model(model.get_layer(name="image").input, model.get_layer(name="densetwo").output)#edit_distance_callback = EarlyStoppingAtLoss()epochs = 60early_stopping_patience = 10# Add early stoppingearly_stopping = keras.callbacks.EarlyStopping(monitor="val_loss", patience=early_stopping_patience, restore_best_weights=True)# Train the model.history = model.fit(train_final,validation_data=validation_final,epochs=60,callbacks=[early_stopping])# ## Inference# In[ ]:plt.rcParams['font.family'] = ['Microsoft YaHei']# A utility function to decode the output of the network.def handwriting_prediction(pred):input_len = np.ones(pred.shape[0]) * pred.shape[1]= []for j in results:j = tf.gather(j, tf.where(tf.math.not_equal(j, -1)))j = tf.strings.reduce_join(no_map_string(j)).numpy().decode("utf-8")output_text.append(j)return output_text#Let's check results on some test samples.for test in test_final.take(1):test_images = test["image"]_, ax = plt.subplots(4, 4, figsize=(15, 8))predit = prediction_model.predict(test_images)predit_text = handwriting_prediction(predit)for k in range(16):img = test_images[k]img = tf.image.flip_left_right(img)img = tf.transpose(img, perm=[1, 0, 2])img = (img * 255.0).numpy().clip(0, 255).astype(np.uint8)img = img[:, :, 0]title = f"预测结果: {predit_text[k]}" # In[ ]:

创作不易 觉得有帮助请点赞关注收藏~~~