目录

效果

模型信息

项目

代码

下载


C# OpenCvSharp DNN FreeYOLO 人脸检测

效果

模型信息

Inputs
————————-
name:input
tensor:Float[1, 3, 192, 320]
—————————————————————

Outputs
————————-
name:output
tensor:Float[1, 1260, 6]
—————————————————————

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
public partial class frmMain : Form
{
public frmMain()
{
InitializeComponent();
}

string fileFilter = “*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png”;
string image_path = “”;

DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;

float confThreshold;
float nmsThreshold;

int num_stride = 3;
float[] strides = new float[3] { 8.0f, 16.0f, 32.0f };

string modelpath;

int inpHeight;
int inpWidth;

List class_names;
int num_class;

Net opencv_net;
Mat BN_image;

Mat image;
Mat result_image;

private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;

pictureBox1.Image = null;
pictureBox2.Image = null;
textBox1.Text = “”;

image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}

private void Form1_Load(object sender, EventArgs e)
{
confThreshold = 0.8f;
nmsThreshold = 0.5f;

modelpath = “model/yolo_free_huge_widerface_192x320.onnx”;

inpHeight = 192;
inpWidth = 320;

opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

class_names = new List();
class_names.Add(“face”);
num_class = 1;

image_path = “test_img/1.jpg”;
pictureBox1.Image = new Bitmap(image_path);

}

private unsafe void button2_Click(object sender, EventArgs e)
{
if (image_path == “”)
{
return;
}
textBox1.Text = “检测中,请稍等……”;
pictureBox2.Image = null;
Application.DoEvents();

image = new Mat(image_path);

float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);
int neww = (int)(image.Cols * ratio);
int newh = (int)(image.Rows * ratio);

Mat dstimg = new Mat();
Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));

Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight – newh, 0, inpWidth – neww, BorderTypes.Constant);

BN_image = CvDnn.BlobFromImage(dstimg);

//配置图片输入数据
opencv_net.SetInput(BN_image);

//模型推理,读取推理结果
Mat[] outs = new Mat[1] { new Mat() };
string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

dt1 = DateTime.Now;

opencv_net.Forward(outs, outBlobNames);

dt2 = DateTime.Now;

int num_proposal = outs[0].Size(1);
int nout = outs[0].Size(2);

float* pdata = (float*)outs[0].Data;

List confidences = new List();
List boxes = new List();
List classIds = new List();

for (int n = 0; n < num_stride; n++)
{
int num_grid_x = (int)Math.Ceiling(inpWidth / strides[n]);
int num_grid_y = (int)Math.Ceiling(inpHeight / strides[n]);

for (int i = 0; i < num_grid_y; i++)
{
for (int j = 0; j < num_grid_x; j++)
{
float box_score = pdata[4];
int max_ind = 0;
float max_class_socre = 0;
for (int k = 0; k < num_class; k++)
{
if (pdata[k + 5] > max_class_socre)
{
max_class_socre = pdata[k + 5];
max_ind = k;
}
}
max_class_socre = max_class_socre* box_score;
max_class_socre = (float)Math.Sqrt(max_class_socre);

if (max_class_socre > confThreshold)
{
float cx = (0.5f + j + pdata[0]) * strides[n]; //cx
float cy = (0.5f + i + pdata[1]) * strides[n];//cy
float w = (float)(Math.Exp(pdata[2]) * strides[n]);//w
float h = (float)(Math.Exp(pdata[3]) * strides[n]); //h

float xmin = (float)((cx – 0.5 * w) / ratio);
float ymin = (float)((cy – 0.5 * h) / ratio);
float xmax = (float)((cx + 0.5 * w) / ratio);
float ymax = (float)((cy + 0.5 * h) / ratio);

int left = (int)((cx – 0.5 * w) / ratio);
int top = (int)((cy – 0.5 * h) / ratio);
int width = (int)(w / ratio);
int height = (int)(h / ratio);

confidences.Add(max_class_socre);
boxes.Add(new Rect(left, top, width, height));
classIds.Add(max_ind);
}
pdata += nout;
}
}

}

int[] indices;
CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);

result_image = image.Clone();

for (int ii = 0; ii < indices.Length; ++ii)
{
int idx = indices[ii];
Rect box = boxes[idx];
Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
string label = class_names[classIds[idx]] + “:” + confidences[idx].ToString(“0.00”);
Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y – 5), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);
}

pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
textBox1.Text = “推理耗时:” + (dt2 – dt1).TotalMilliseconds + “ms”;

}

private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
}

private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
}
}

using OpenCvSharp;using OpenCvSharp.Dnn;using System;using System.Collections.Generic;using System.Drawing;using System.Linq;using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;float confThreshold;float nmsThreshold;int num_stride = 3;float[] strides = new float[3] { 8.0f, 16.0f, 32.0f };string modelpath;int inpHeight;int inpWidth;List class_names;int num_class;Net opencv_net;Mat BN_image;Mat image;Mat result_image;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){confThreshold = 0.8f;nmsThreshold = 0.5f;modelpath = "model/yolo_free_huge_widerface_192x320.onnx";inpHeight = 192;inpWidth = 320;opencv_net = CvDnn.ReadNetFromOnnx(modelpath);class_names = new List();class_names.Add("face");num_class = 1;image_path = "test_img/1.jpg";pictureBox1.Image = new Bitmap(image_path);}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;Application.DoEvents();image = new Mat(image_path);float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);int neww = (int)(image.Cols * ratio);int newh = (int)(image.Rows * ratio);Mat dstimg = new Mat();Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);BN_image = CvDnn.BlobFromImage(dstimg);//配置图片输入数据opencv_net.SetInput(BN_image);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();dt1 = DateTime.Now;opencv_net.Forward(outs, outBlobNames);dt2 = DateTime.Now;int num_proposal = outs[0].Size(1);int nout = outs[0].Size(2);float* pdata = (float*)outs[0].Data;List confidences = new List();List boxes = new List();List classIds = new List();for (int n = 0; n < num_stride; n++){int num_grid_x = (int)Math.Ceiling(inpWidth / strides[n]);int num_grid_y = (int)Math.Ceiling(inpHeight / strides[n]);for (int i = 0; i < num_grid_y; i++){for (int j = 0; j < num_grid_x; j++){float box_score = pdata[4];int max_ind = 0;float max_class_socre = 0;for (int k = 0; k  max_class_socre){max_class_socre = pdata[k + 5];max_ind = k;}}max_class_socre = max_class_socre* box_score;max_class_socre = (float)Math.Sqrt(max_class_socre);if (max_class_socre > confThreshold){float cx = (0.5f + j + pdata[0]) * strides[n];//cxfloat cy = (0.5f + i + pdata[1]) * strides[n]; //cyfloat w = (float)(Math.Exp(pdata[2]) * strides[n]); //wfloat h = (float)(Math.Exp(pdata[3]) * strides[n]);//hfloat xmin = (float)((cx - 0.5 * w) / ratio);float ymin = (float)((cy - 0.5 * h) / ratio);float xmax = (float)((cx + 0.5 * w) / ratio);float ymax = (float)((cy + 0.5 * h) / ratio);int left = (int)((cx - 0.5 * w) / ratio);int top = (int)((cy - 0.5 * h) / ratio);int width = (int)(w / ratio);int height = (int)(h / ratio);confidences.Add(max_class_socre);boxes.Add(new Rect(left, top, width, height));classIds.Add(max_ind);}pdata += nout;}}}int[] indices;CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);result_image = image.Clone();for (int ii = 0; ii < indices.Length; ++ii){int idx = indices[ii];Rect box = boxes[idx];Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);}pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}}

下载

可运行程序exe下载

源码下载