初始代码:
pyLDAvis.enable_notebook()pic = pyLDAvis.sklearn.prepare(lda, tf, tf_vectorizer)pyLDAvis.save_html(pic, 'lda'+ str(n_topics)+'.html')pyLDAvis.show(pic, open_browser=False, local=False)
报错结果如下,请问大家怎么解决呀?
TypeError Traceback (most recent call last) in 1 pyLDAvis.enable_notebook()----> 2 pic = pyLDAvis.sklearn.prepare(lda, tf, tf_vectorizer)3 pyLDAvis.save_html(pic, 'lda'+ str(n_topics)+'.html')4 pyLDAvis.show(pic, open_browser=False, local=False)E:\ANACONDA\lib\site-packages\pyLDAvis\sklearn.py in prepare(lda_model, dtm, vectorizer, **kwargs) 93 """ 94 opts = fp.merge(_extract_data(lda_model, dtm, vectorizer), kwargs)---> 95 return pyLDAvis.prepare(**opts)E:\ANACONDA\lib\site-packages\pyLDAvis\_prepare.py in prepare(topic_term_dists, doc_topic_dists, doc_lengths, vocab, term_frequency, R, lambda_step, mds, n_jobs, plot_opts, sort_topics, start_index)437 term_frequency = np.sum(term_topic_freq, axis=0)438 --> 439 topic_info = _topic_info(topic_term_dists, topic_proportion,440term_frequency, term_topic_freq, vocab, lambda_step, R,441n_jobs, start_index)E:\ANACONDA\lib\site-packages\pyLDAvis\_prepare.py in _topic_info(topic_term_dists, topic_proportion, term_frequency, term_topic_freq, vocab, lambda_step, R, n_jobs, start_index)244 'Total': term_frequency,245 'Category': 'Default'})--> 246 default_term_info = default_term_info.sort_values(247 by='saliency', ascending=False).head(R).drop('saliency', 1)248 # Rounding Freq and Total to integer values to match LDAvis code:TypeError: drop() takes from 1 to 2 positional arguments but 3 were given