k8s的二进制部署:源码包部署
k8s master01:192.168.66.10 kube-apiserver kube-controller-manager kube-scheduler etcd
k8s master02“ 192.168.66.20 kube-apiserver kube-controller-manager kube-scheduler
node节点01:192.168.66.30 kubelet kube-proxy etcd
node节点02:192.168.66.40 kubelet kube-proxy etcd
负载均衡: nignix+keepalive:master 192.168.66.50
backup:192.168.66.60
etcd: 192.168.66.10
192.168.66.30
192.168.66.40
所有 :master01 node 1,2
systemctl stop firewalld
setenforce 0
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X
swapoff -a
###
swapoff -a
k8s在设计时,为了提升性能,默认是不使用swap分区,kubenetes在初始化时,会检测swap是否关闭
##
master1:
hostnamectl set-hostname master01
node1:
hostnamectl set-hostname node01
node2:
hostnamectl set-hostname node02
所有
vim /etc/hosts
192.168.66.10 master01
192.168.66.30 node01
192.168.66.40 node02
vim /etc/sysctl.d/k8s.conf
#开启网桥模式:
net.bridge.bridge-nf-call-ip6tables=1
net.bridge.bridge-nf-call-iptables=1
#网桥的流量传给iptables链,实现地址映射
#关闭ipv6的流量(可选项)
net.ipv6.conf.all.disable_ipv6=1
#根据工作中的实际情况,自定
net.ipv4.ip_forward=1
wq!
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
##
sysctl –system
yum install ntpdate -y
ntpdate ntp.aliyun.com
date
yum install -y yum-utils device-mapper-persistent-data lvm2
yum-config-manager –add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
yum install -y docker-ce docker-ce-cli containerd.io
systemctl start docker.service
systemctl enable docker.service
mkdir -p /etc/docker
tee /etc/docker/daemon.json <<-'EOF'
{
“registry-mirrors”: [“https://t7pjr1xu.mirror.aliyuncs.com”]
}
EOF
systemctl daemon-reload
systemctl restart docker
部署第一个组件:
存储k8s的集群信息和用户配置组件:etcd
etcd是一个高可用—分布式的键值对存储数据库
采用raft算法保证节点的信息一致性,etcd是用go语言写的
etcd的端口:2379:api接口 对外为客户端提供通讯
2380:内存服务的通信端口
etcd一般都是集群部署,etcd也有选举leader的机制,至少要3台,或者奇数台
k8s的内部通信依靠证书认证,密钥认证:证书的签发环境
master01:
cd /opt
投进来三个证书
mv cfssl cfssl-certinfo cfssljson /usr/local/bin
chmod 777 /usr/local/bin/cfssl*
##
cfssl:证书签发的命令工具
cdssl-certinfo:查看证书信息的工具
cfssljson:把证书的格式转化为json格式,变成文件的承载式证书
##
cd /opt
mkdir k8s
cd k8s
把两个证书投进去:
vim etcd-cert.sh
vim etcd.sh
q!
chmod 777 etcd-cert.sh etcd.sh
mkdir /opt/k8s/etcd-cert
mv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh
ls
##
ca-config.json ca-csr.json ca.pem server.csr server-key.pem
ca.csr ca-key.pem etcd-cert.sh server-csr.json server.pem
ca-config.json: 证书颁发的配置文件,定义了证书生成的策略,默认的过期时间和模版
ca-csr.json: 签名的请求文件,包括一些组织信息和加密方式
ca.pem 根证书文件,用于给其他组件签发证书
server.csr etcd的服务器签发证书的请求文件
server-key.pem etcd服务器的私钥文件
ca.csr 根证书签发请求文件
ca-key.pem 根证书私钥文件
server-csr.json 用于生成etcd的服务器证书和私钥签名文件
server.pem etcd服务器证书文件,用于加密和认证 etcd 节点之间的通信。
###
cd /opt/k8s/
把 zxvf etcd-v3.4.9-linux-amd64.tar.gz 拖进去
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
ls etcd-v3.4.9-linux-amd64
mkdir -p /opt/etcd/{cfg,bin,ssl}
cd etcd-v3.4.9-linux-amd64
mv etcd etcdctl /opt/etcd/bin/
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/
cd /opt/k8s/
./etcd.sh etcd01 192.168.66.10 etcd02=https://192.168.66.30:2380,etcd03=https://192.168.66.40:2380
开一台master1终端
scp -r /opt/etcd/ root@192.168.66.30:/opt/
scp -r /opt/etcd/ root@192.168.66.40:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.66.30:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.66.40:/usr/lib/systemd/system/
node1:
vim /opt/etcd/cfg/etcd
node2:
vim /opt/etcd/cfg/etcd
一个一个起
从master01开始
systemctl start etcd
systemctl enable etcd
systemctl status etcd
master:
ETCDCTL_API=3 /opt/etcd/bin/etcdctl –cacert=/opt/etcd/ssl/ca.pem –cert=/opt/etcd/ssl/server.pem –key=/opt/etcd/ssl/server-key.pem –endpoints=”https://192.168.66.10:2379,https://192.168.66.30:2379,https://192.168.66.40:2379″ endpoint health –write-out=table
ETCDCTL_API=3 /opt/etcd/bin/etcdctl –cacert=/opt/etcd/ssl/ca.pem –cert=/opt/etcd/ssl/server.pem –key=/opt/etcd/ssl/server-key.pem –endpoints=”https://192.168.66.10:2379,https://192.168.66.30:2379,https://192.168.66.40:2379″ –write-out=table member list
master01:
#上传 master.zip 和 k8s-cert.sh 到 /opt/k8s 目录中,解压 master.zip 压缩包
cd /opt/k8s/
vim k8s-cert.sh
unzip master.zip
chmod 777 *.sh
vim controller-manager.sh
vim scheduler.sh
vim admin.sh
#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
mkdir /opt/k8s/k8s-cert
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
./k8s-cert.sh
ls
cp ca*pem apiserver*pem /opt/kubernetes/ssl/
cd /opt/kubernetes/ssl/
ls
cd /opt/k8s/
把 kubernetes-server-linux-amd64.tar.gz 拖进去
tar zxvf kubernetes-server-linux-amd64.tar.gz
cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get node
kubectl get cs
cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ‘ ‘)
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,”system:kubelet-bootstrap”
EOF
wq!
chmod 777 token.sh
./token.sh
cat /opt/kubernetes/cfg/token.csv
cd /opt/k8s/
./apiserver.sh 192.168.66.10 https://192.168.66.10:2379,https://192.168.66.30:2379,https://192.168.66.40:2379
netstat -natp | grep 6443
cd /opt/k8s/
./scheduler.sh
ps aux | grep kube-scheduler
./controller-manager.sh
ps aux | grep kube-controller-manager
./admin.sh
kubectl get cs
kubectl version
kubectl api-resources
vim /etc/profile
G
o
source <(kubectl completion bash)
source /etc/profile
在所有 node 节点上操作 node1,2:
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
cd /opt
node.zip 到 /opt 目录中
unzip node.zip
chmod 777 kubelet.sh proxy.sh
master01:
cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.66.30:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.66.40:/opt/kubernetes/bin/
master 01:
mkdir -p /opt/k8s/kubeconfig
cd /opt/k8s/kubeconfig
把kubeconfig.sh 拖进去
chmod 777 kubeconfig.sh
./kubeconfig.sh 192.168.66.10 /opt/k8s/k8s-cert/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.66.30:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.66.40:/opt/kubernetes/cfg/
node1,2:
cd /opt/kubernetes/cfg/
ls
master01:
kubectl create clusterrolebinding kubelet-bootstrap –clusterrole=system:node-bootstrapper –user=kubelet-bootstrap
#RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书,通过CSR加密认证实现INIDE节点加入到集群当中,kubelet获取master的验证信息和获取API的验证
kubectl create clusterrolebinding cluster-system-anonymous –clusterrole=cluster-admin –user=system:anonymous
node1:
cd /opt/
chmod 777 kubelet.sh
./kubelet.sh 192.168.66.30
master01:
kubectl get cs
kubectl get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE 12s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
kubectl certificate approve node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE
##上面的密钥对
kubectl get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE 2m5s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Approved,Issued
##必须是Approved,Issued 才成功
node2:
cd /opt/
chmod 777 kubelet.sh
./kubelet.sh 192.168.66.40
master01:
kubectl get cs
kubectl get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE 12s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
kubectl certificate approve node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE
##上面的密钥对
kubectl get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE 2m5s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Approved,Issued
##必须是Approved,Issued 才成功
master01:
kubectl get node
在node1:
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar
mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin
node2:
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar
mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin
在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml
kubectl get pod -n kube-system
kubectl get pod -o wide -n kube-system
//在node1,2 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar
//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS
cd /opt/k8s
kubectl apply -f coredns.yaml
kubectl get pods -n kube-system
kubectl create clusterrolebinding cluster-system-anonymous –clusterrole=cluster-admin –user=system:anonymous
kubectl run -it –rm dns-test –image=busybox:1.28.4 sh
If you don’t see a command prompt, try pressing enter.
/ # nslookup kubernetes
exit
master02:
systemctl stop firewalld
setenforce 0
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X
swapoff -a
hostnamectl set-hostname master02
所有的机器做映射
master02:
vim /etc/sysctl.d/k8s.conf
#开启网桥模式:
net.bridge.bridge-nf-call-ip6tables=1
net.bridge.bridge-nf-call-iptables=1
#网桥的流量传给iptables链,实现地址映射
#关闭ipv6的流量(可选项)
net.ipv6.conf.all.disable_ipv6=1
#根据工作中的实际情况,自定
net.ipv4.ip_forward=1
wq!
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
##
sysctl –system
yum install ntpdate -y
ntpdate ntp.aliyun.com
date
master01:
scp -r /opt/etcd/ root@192.168.66.20:/opt/
scp -r /opt/kubernetes/ root@192.168.66.20:/opt
scp -r /root/.kube root@192.168.66.20:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.66.20:/usr/lib/systemd/system/
master02:
vim /opt/kubernetes/cfg/kube-apiserver
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get cs
kubectl get pod
##node节点和master02并没真正建议通信。只是从etcd信息
在nginx 1,2
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF
yum install nginx -y
vim /etc/nginx/nginx.conf
events {
worker_connections 1024;
}
#添加
stream {
log_format main ‘$remote_addr $upstream_addr – [$time_local] $status $upstream_bytes_sent’;
#日志记录格式
#$remote_addr: 客户端的 IP 地址。
#$upstream_addr: 上游服务器的地址。
#[$time_local]: 访问时间,使用本地时间。
#$status: HTTP 响应状态码。
#$upstream_bytes_sent: 从上游服务器发送到客户端的字节数。
access_log /var/log/nginx/k8s-access.log main;
upstream k8s-apiserver {
server 192.168.233.10:6443;
server 192.168.233.20:6443;
}
server {
listen 6443;
proxy_pass k8s-apiserver;
}
}
##
stream {
log_format main ‘$remote_addr $upstream_addr – [$time_local] $status $upstream_bytes_sent’;
access_log /var/log/nginx/k8s-access.log main;
upstream k8s-apiserver {
server 192.168.233.10:6443;
server 192.168.233.20:6443;
}
server {
listen 6443;
proxy_pass k8s-apiserver;
}
}
wq!
nginx -t
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx
yum install keepalived -y
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived
global_defs {
# 接收邮件地址
notification_email {
acassen@firewall.loc
failover@firewall.loc
sysadmin@firewall.loc
}
# 邮件发送地址
notification_email_from Alexandre.Cassen@firewall.loc
smtp_server 127.0.0.1
smtp_connect_timeout 30
router_id NGINX_MASTER #lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
#vrrp_strict #注释掉
}
#添加一个周期性执行的脚本
vrrp_script check_nginx {
script “/etc/nginx/check_nginx.sh” #指定检查nginx存活的脚本路径
}
vrrp_instance VI_1 {
state MASTER #lb01节点的为 MASTER,lb02节点的为 BACKUP
interface ens33 #指定网卡名称 ens33
virtual_router_id 51 #指定vrid,两个节点要一致
priority 100 #lb01节点的为 100,lb02节点的为 90
advert_int 1
authentication {
auth_type PASS
auth_pass 1111
}
virtual_ipaddress {
192.168.233.100/24 #指定 VIP
}
track_script {
check_nginx #指定vrrp_script配置的脚本 !!!从不需要设置脚本
}
}
vim /etc/nginx/check_nginx.sh
#!/bin/bash
/usr/bin/curl -I http://localhost &>/dev/null
if [ $” />https://192.168.66.30:30001