在网站What is Cloud Native” />CLOUD NATIVE APPLICATIONS
TRADITIONAL MONOLITHIC APPLICATIONS
Predictable. Cloud native apps conform to a framework or “contract” designed to maximize resilience through predictable behaviors. The automated, container-driven infrastructure used in cloud platforms drives the way software is written. A good example of such a “contract” is illustrated by the 12 principles first documented as the 12-factor app.
Unpredictable. Traditional applications can’t realize all of the benefits of running on a cloud native platform due to the unique way each application is architected or developed. This type of application often takes longer to build, releases improvements in big, infrequent batches, scales up instead of out, and assumes the underlying infrastructure provides high availability.
OS abstraction. A cloud native architecture gives developers a means of abstracting away underlying infrastructure dependencies. Instead of configuring, patching, and maintaining operating systems, teams focus on software. The most efficient means of abstraction is a formalized platform.
OS dependent. Traditional application architecture requires developers to build close dependencies between the application and underlying OS, hardware, storage, and backing services. These dependencies make migrating and scaling the application across new infrastructure complex and risky.
Right-sized capacity. A cloud native application platform automates infrastructure provisioning and configuration, dynamically allocating and reallocating resources at deploy time based on the needs of the application. Building on a cloud native runtime optimizes application lifecycle management, including scaling to meet demand, resource utilization, orchestration across available resources, and recovery from failures with minimum downtime.
Over-sized capacity. Traditional IT designs a dedicated, custom infrastructure solution (“snowflake”) for an application, delaying deployment of the application. The solution is often over-sized and built to satisfy worst-case capacity estimates with little ability to scale beyond design limits to meet demand.
Collaborative. Cloud native architecture facilitates DevOps, a combination of people, process, and tools that increases collaboration between development and operations teams to speed and smooth the transfer of finished application code into production.
Siloed. Traditional applications utilize an over-the-wall handoff of finished application code from developers to operations. Organizational priorities take precedence over customer value, resulting in internal conflict, slow and compromised delivery, and poor staff morale.
CI/CD. IT teams make individual software updates available for release as soon as they are ready. Organizations that release software rapidly get a tighter feedback loop and can respond more effectively to customer needs. CI/CD works best with other related approaches such as test-driven development.
Waterfall development. IT teams release software periodically, typically at intervals of weeks or months, despite the fact that many components of a release may have been ready much earlier with no dependencies. Features that customers want or need are delayed and the business misses opportunities to compete, win customers, and grow revenue.
Independent. Microservices architecture decomposes applications into small, loosely coupled, independently operating services. These services map to smaller, independent development teams and make possible frequent updates, scaling and failover/restart without impacting other services.
Dependent. Monolithic architectures bundle many disparate services into a single deployment package, causing unnecessary dependencies between services and leading to a loss of agility during development and deployment.
Automated scalability. Infrastructure automation at scale eliminates downtime due to human error, consistently applying the same set of rules across any size deployment. Cloud native also goes beyond the ad-hoc automation built on top of traditional virtualization-oriented orchestration. A fully cloud native architecture is about automating systems, not servers.
Manual scaling. Manual infrastructure includes human operators that manually create and manage server, network, and storage configurations. At scale, operators are slow to correctly diagnose issues and fail to correctly implement solutions due to the level of complexity. Hand-crafted automation recipes have the potential to hard-code human errors into the infrastructure.
Rapid recovery. The container runtime and orchestrator provides a dynamic, high-density virtualization overlay, ideally matched to the microservices architecture. Orchestration dynamically manages placement of containers across a cluster to provide elastic scaling and recovery/restart in the event of app or infrastructure failure.
Slow recovery. VMs by themselves are a slower and less efficient foundation for microservice-based applications due to slower startup/shutdown and operating system overhead for each VM.
Streamline productivity. Developer experience (DevX) assesses how well developers interact with the systems and tools necessary for cloud native application development. A positive DevX allows developers to better deliver robust, scalable apps, ship software quickly in response to changing market dynamics or customer needs, and deliver business value.
Entrenched culture. Legacy platforms are significant obstacles to developer productivity. Many businesses tend to be reactive and treat software development as a “one-off” project, even while recognizing how important developer experience is to achieving positive business objectives.