高精度HighAccuracy_acwing.cpp

图片[1] - 高精度HighAccuracy_acwing.cpp - MaxSSL图片[2] - 高精度HighAccuracy_acwing.cpp - MaxSSL

文章:

力扣模板:字符串相加 – 字符串相加 – 力扣(LeetCode)

acwing模板:常用代码模板1——基础算法 – AcWing

例题:

P1009 [NOIP1998 普及组] 阶乘之和 – 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

笔记:HighAccuracy_acwing.cpp

说明:参考acwing的模板,但是和acwing模板不完全相同

#includeusing namespace std;//HighAccuracy_acwing.cpp/*说明:参考acwing的模板:https://www.acwing.com/blog/content/277/但是和acwing模板不完全相同*/// C = A + B, A >= 0, B >= 0//这里不加&,就可以避免改变了原来的a,b数组,使得a,b数组可以重复利用vector<int> add(vector<int> A, vector<int> B){  //正序输入两个vector类型的“数”    if (A.size() < B.size()) return add(B, A);  //使得A数组是最大的    //如果未反转,在if下面加reverse,不能在if上面加reverse,否者二次反转,等于没有反转        reverse(A.begin(),A.end());  //反转数组,变成个十百千万···    reverse(B.begin(),B.end());    vector<int> C;  //初始化答案数组    int t = 0;    for (int i = 0; i < A.size(); i ++ ){        t += A[i];        if (i < B.size()) t += B[i];  //如果B还有数字        C.push_back(t % 10);        t /= 10;    }    if (t) C.push_back(t);//最后一次加法可能还有进位的数,把最高位补上    return C;}string add(string a, string b){    if(a.size()<b.size()) return add(b,a);    reverse(a.begin(),a.end());    reverse(b.begin(),b.end());    int t = 0;    string c;    for(int i = 0; i<a.size(); i++){        t += a[i] - '0';        if(i<b.size()) t+=b[i] - '0';        c.push_back(t%10 + '0');        t /= 10;    }    if(t) c.push_back(t + '0');    reverse(c.begin(), c.end());    return c;}// C = A - B, 满足A >= B, A >= 0, B >= 0vector<int> sub(vector<int> A, vector<int> B){    vector<int> C;    for (int i = 0, t = 0; i < A.size(); i ++ )    {        t = A[i] - t;        if (i < B.size()) t -= B[i];        C.push_back((t + 10) % 10);        if (t < 0) t = 1;        else t = 0;    }    while (C.size() > 1 && C.back() == 0) C.pop_back();    return C;}/*高精度乘低精度 —— 模板题*/// C = A * b, A >= 0, b >= 0vector<int> mul(vector<int> A, int b){  //输入正序的高精度A和低精度b    vector<int> C;  //初始化答案数组    reverse(A.begin(),A.end());  //反转数组,变成个十百千万···    int t = 0;    for (int i = 0; i < A.size() || t; i++ ){  //A数组还有数 或 t还有数        if (i < A.size()) t += A[i] * b;  //如果 A数组还有数        C.push_back(t % 10);        t /= 10;    }    while (C.size() > 1 && C.back() == 0) C.pop_back();  //末尾可能是0,都要去掉(我感觉是多余的,不可能有这种情况)(难道是处理b==0?)    reverse(C.begin(),C.end());  //反转数组,恢复正序    return C;}string mul(string a, int b){    reverse(a.begin(), a.end());    string c;    int t = 0;    for(int i = 0; i<a.size() || t; i++){        if(i<a.size()) t += (a[i] - '0') * b;        c.push_back(t%10 + '0');        t /= 10;    }    while(c.size()>1 && c.back() == 0)c.pop_back();    reverse(c.begin(), c.end());    return c;}int main(){    //加法    vector<int> addint1 = {1,2,3,4,5,6,7,8,9};    vector<int> addint2 = {9,8,7,6,5,4,3,2,1,0};    vector<int> addint3 = add(addint1,addint2);    for(int i = 0;i<addint3.size(); i++) cout<<addint3[i];    printf("\n");    //加法    string addstr1 = {"123456789"};    string addstr2 = {"9876543210"};    string addstr3 = add(addstr1,addstr2);    cout<< addstr3 <<endl;    //乘法    vector<int> mulint1 = {1,2,3,4,5,6,7,8,9};    int mulint2 = 100000;    vector<int> mulint3 = mul(mulint1,mulint2);    for(int i = 0;i<mulint3.size(); i++) cout<<mulint3[i];    printf("\n");    //乘法    string mulstr1 = "123456789";    int mulstr2 = 100000;    cout<<mul(mulstr1,mulstr2)<<endl;    return 0;}

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享