主页: https://google.github.io/mediapipe/solutions/holistic.html
MediaPipe Holistic pipelines 集成了姿势、面部和手部组件的独立模型,每个组件都针对其特定领域进行了优化,每个组件的推断输入图不同。
MediaPipe Holistic 首先通过 BlazePose 的姿势检测器和后续的关键点模型来估计人的姿势。然后,利用推断出的姿势关键点,为每只手和脸部推导出三个感兴趣区域(ROI)裁剪,并采用 re-crop 模型来改进 ROI
然后,pipelines 将全分辨率输入帧上裁剪这些 ROI,并应用特定任务的模型来估计它们对应的关键点。最后,将所有关键点与姿势模型的关键点合并,得出全部 540 多个关键点。
实现过程
编译demo
bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 --action_env PYTHON_BIN_PATH="C:xxx//python.exe" mediapipe/examples/desktop/holistic_tracking:holistic_tracking_cpu --verbose_failuresbazel-bin\mediapipe\examples\desktop\holistic_tracking\holistic_tracking_cpu --calculator_graph_config_file=mediapipe/graphs/holistic_tracking/holistic_tracking_cpu.pbtxt
如果运行成功,则默认会调用摄像头
编写测试demo
环境配置参考:
- https://blog.csdn.net/sunnyblogs/article/details/118891249
- https://blog.csdn.net/haiyangyunbao813/article/details/119192951
修改
mediapipe\examples\desktop\holistic_tracking
中BUILD
增加个测试程序节点
cc_binary(name = "holistic_tracking_sample",srcs = ["main.cpp","holistic_detect.h","holistic_detect.cpp"],# linkshared=True,deps = ["//mediapipe/graphs/holistic_tracking:holistic_tracking_cpu_graph_deps",],)
holistic_detect.h
#ifndef _HOLISTIC_DETECT_H_#define _HOLISTIC_DETECT_H_#include #include "absl/flags/flag.h"#include "absl/flags/parse.h"#include "mediapipe/framework/calculator_framework.h"#include "mediapipe/framework/formats/image_frame.h"#include "mediapipe/framework/formats/image_frame_opencv.h"#include "mediapipe/framework/port/file_helpers.h"#include "mediapipe/framework/port/opencv_highgui_inc.h"#include "mediapipe/framework/port/opencv_imgproc_inc.h"#include "mediapipe/framework/port/opencv_video_inc.h"#include "mediapipe/framework/port/parse_text_proto.h"#include "mediapipe/framework/port/status.h"#include "mediapipe/framework/formats/detection.pb.h"#include "mediapipe/framework/formats/landmark.pb.h"#include "mediapipe/framework/formats/rect.pb.h"#include "mediapipe/framework/formats/classification.pb.h"#include "mediapipe/framework/port/ret_check.h"namespace mp {using holistic_callback_t = std::function<void()>;class HolisticDetect{public:int initModel(const char* model_path) noexcept;int detectVideoCamera(holistic_callback_t call);int detectVideo(const char* video_path, int show_image, holistic_callback_t call);int detectVideo();int release();private:absl::Status initGraph(const char* model_path);absl::Status runMPPGraphVideo(const char* video_path, int show_image, holistic_callback_t call);absl::Status releaseGraph();void showFaceLandmarks(cv::Mat& image);void showPoseLandmarks(cv::Mat& image);void showLHandLandmarks(cv::Mat& image);void showRHandLandmarks(cv::Mat& image);const char* kInputStream = "input_video";const char* kOutputStream = "output_video";const char* kWindowName = "MediaPipe";const char* kOutputLandmarks = "face_landmarks";const char* kOutputPoseLandmarks = "pose_landmarks";const char* kOutputLHandLandmarks = "left_hand_landmarks";const char* kOutputRHandLandmarks = "right_hand_landmarks";bool init_ = false;mediapipe::CalculatorGraph graph_;const float kMinFloat = std::numeric_limits<float>::lowest();const float kMaxFloat = std::numeric_limits<float>::max();std::unique_ptr<mediapipe::OutputStreamPoller> pPoller_;std::unique_ptr<mediapipe::OutputStreamPoller> pPollerFaceLandmarks_;std::unique_ptr<mediapipe::OutputStreamPoller> pPollerPoseLandmarks_;std::unique_ptr<mediapipe::OutputStreamPoller> pPollerLHandLandmarks_;std::unique_ptr<mediapipe::OutputStreamPoller> pPollerRHandLandmarks_;};}#endif
holistic_detect.cpp
#include "holistic_detect.h"using namespace mp;int HolisticDetect::initModel(const char* model_path) noexcept {absl::Status run_status = initGraph(model_path);if (!run_status.ok())return -1;init_ = true;return1;}int HolisticDetect::detectVideoCamera(holistic_callback_t call) {if (!init_)return -1;absl::Status run_status = runMPPGraphVideo("", true, call);return run_status.ok() " />1 : -1;}int HolisticDetect::detectVideo(const char* video_path, int show_image, holistic_callback_t call) {if (!init_)return -1;absl::Status run_status = runMPPGraphVideo(video_path, show_image, call);return run_status.ok() ? 1 : -1;}int HolisticDetect::detectVideo() {if (!init_)return -1;absl::Status run_status = runMPPGraphVideo("", 1, nullptr);return run_status.ok() ? 1 : -1;}int HolisticDetect::release() {absl::Status run_status = releaseGraph();return run_status.ok() ? 1 : -1;}absl::Status HolisticDetect::initGraph(const char* model_path) {std::string calculator_graph_config_contents;MP_RETURN_IF_ERROR(mediapipe::file::GetContents(model_path, &calculator_graph_config_contents));mediapipe::CalculatorGraphConfig config =mediapipe::ParseTextProtoOrDie<mediapipe::CalculatorGraphConfig>(calculator_graph_config_contents);MP_RETURN_IF_ERROR(graph_.Initialize(config));auto sop = graph_.AddOutputStreamPoller(kOutputStream);assert(sop.ok());pPoller_ = std::make_unique<mediapipe::OutputStreamPoller>(std::move(sop.value()));// 脸部特征mediapipe::StatusOrPoller faceLandmark = graph_.AddOutputStreamPoller(kOutputLandmarks);assert(faceLandmark.ok());pPollerFaceLandmarks_ = std::make_unique<mediapipe::OutputStreamPoller>(std::move(faceLandmark.value()));// 姿态特征mediapipe::StatusOrPoller poseLandmark = graph_.AddOutputStreamPoller(kOutputPoseLandmarks);assert(poseLandmark.ok());pPollerPoseLandmarks_ = std::make_unique<mediapipe::OutputStreamPoller>(std::move(poseLandmark.value()));// 左手特征点mediapipe::StatusOrPoller leftHandLandmark = graph_.AddOutputStreamPoller(kOutputLHandLandmarks);assert(leftHandLandmark.ok());pPollerLHandLandmarks_ = std::make_unique<mediapipe::OutputStreamPoller>(std::move(leftHandLandmark.value()));// 右手特征点mediapipe::StatusOrPoller rightHandLandmark = graph_.AddOutputStreamPoller(kOutputRHandLandmarks);assert(rightHandLandmark.ok());pPollerRHandLandmarks_ = std::make_unique<mediapipe::OutputStreamPoller>(std::move(rightHandLandmark.value()));MP_RETURN_IF_ERROR(graph_.StartRun({}));std::cout << "======= graph_ StartRun success ============" << std::endl;return absl::OkStatus();}void HolisticDetect::showFaceLandmarks(cv::Mat& image) {mediapipe::Packet packet_landmarks;if (pPollerFaceLandmarks_->QueueSize() == 0 || !pPollerFaceLandmarks_->Next(&packet_landmarks))return;//468 face landmarkauto& output_landmarks = packet_landmarks.Get<mediapipe::NormalizedLandmarkList>();for (int i = 0; i < output_landmarks.landmark_size(); ++i){const mediapipe::NormalizedLandmark landmark = output_landmarks.landmark(i);float x = landmark.x() * image.cols;float y = landmark.y() * image.rows;//cv::circle(image, cv::Point(x, y), 2, cv::Scalar(0, 255, 0));// todo// ...}}void HolisticDetect::showPoseLandmarks(cv::Mat& image) {mediapipe::Packet packet_landmarks;if (pPollerPoseLandmarks_->QueueSize() == 0 || !pPollerPoseLandmarks_->Next(&packet_landmarks))return;//33 pose landmarkauto& output_landmarks = packet_landmarks.Get<mediapipe::NormalizedLandmarkList>();for (int i = 0; i < output_landmarks.landmark_size(); ++i){const mediapipe::NormalizedLandmark landmark = output_landmarks.landmark(i);float x = landmark.x() * image.cols;float y = landmark.y() * image.rows;//cv::circle(image, cv::Point(x, y), 2, cv::Scalar(0, 255, 0));// todo// ...}}void HolisticDetect::showLHandLandmarks(cv::Mat& image) {mediapipe::Packet packet_landmarks;if (pPollerLHandLandmarks_->QueueSize() == 0 || !pPollerLHandLandmarks_->Next(&packet_landmarks))return;//21 left hand landmarkauto& output_landmarks = packet_landmarks.Get<mediapipe::NormalizedLandmarkList>();for (int i = 0; i < output_landmarks.landmark_size(); ++i){const mediapipe::NormalizedLandmark landmark = output_landmarks.landmark(i);float x = landmark.x() * image.cols;float y = landmark.y() * image.rows;//cv::circle(image, cv::Point(x, y), 2, cv::Scalar(0, 255, 0));// todo// ...}}void HolisticDetect::showRHandLandmarks(cv::Mat& image) {mediapipe::Packet packet_landmarks;if (pPollerRHandLandmarks_->QueueSize() == 0 || !pPollerRHandLandmarks_->Next(&packet_landmarks))return;//21 right hand landmarkauto& output_landmarks = packet_landmarks.Get<mediapipe::NormalizedLandmarkList>();for (int i = 0; i < output_landmarks.landmark_size(); ++i){const mediapipe::NormalizedLandmark landmark = output_landmarks.landmark(i);float x = landmark.x() * image.cols;float y = landmark.y() * image.rows;//cv::circle(image, cv::Point(x, y), 2, cv::Scalar(0, 255, 0));// todo// ...}}absl::Status HolisticDetect::runMPPGraphVideo(const char* video_path, int show_image, holistic_callback_t call) {cv::VideoCapture capture(video_path);RET_CHECK(capture.isOpened());#if (CV_MAJOR_VERSION >= 3) && (CV_MINOR_VERSION >= 2)capture.set(cv::CAP_PROP_FRAME_WIDTH, 640);capture.set(cv::CAP_PROP_FRAME_HEIGHT, 480);capture.set(cv::CAP_PROP_FPS, 30);#endifint tmp = 0;bool grab_frames = true;while (grab_frames) {// Capture opencv camera or video frame.cv::Mat camera_frame_raw;capture >> camera_frame_raw;if (camera_frame_raw.empty())break;cv::Mat camera_frame;cv::cvtColor(camera_frame_raw, camera_frame, cv::COLOR_BGR2RGB);cv::flip(camera_frame, camera_frame, /*flipcode=HORIZONTAL*/ 1);// Wrap Mat into an ImageFrame.auto input_frame = absl::make_unique<mediapipe::ImageFrame>(mediapipe::ImageFormat::SRGB, camera_frame.cols, camera_frame.rows,mediapipe::ImageFrame::kDefaultAlignmentBoundary);cv::Mat input_frame_mat = mediapipe::formats::MatView(input_frame.get());camera_frame.copyTo(input_frame_mat);// Send image packet into the graph.size_t frame_timestamp_us =(double)cv::getTickCount() / (double)cv::getTickFrequency() * 1e6;MP_RETURN_IF_ERROR(graph_.AddPacketToInputStream(kInputStream, mediapipe::Adopt(input_frame.release()).At(mediapipe::Timestamp(frame_timestamp_us))));// Get the graph result packet, or stop if that fails.mediapipe::Packet packet;if (!pPoller_->Next(&packet)) break;showFaceLandmarks(camera_frame);showPoseLandmarks(camera_frame);showLHandLandmarks(camera_frame);showRHandLandmarks(camera_frame);if (show_image) {auto& output_frame = packet.Get<mediapipe::ImageFrame>();// Convert back to opencv for display or saving.cv::Mat output_frame_mat = mediapipe::formats::MatView(&output_frame);cv::cvtColor(output_frame_mat, output_frame_mat, cv::COLOR_RGB2BGR);cv::imshow(kWindowName, output_frame_mat);cv::waitKey(1);/*cv::Mat output_frame_mat;cv::cvtColor(camera_frame, output_frame_mat, cv::COLOR_RGB2BGR);cv::imwrite(cv::format("out_image/%d.jpg", tmp++), output_frame_mat);*/}}if (show_image)cv::destroyWindow(kWindowName);return absl::OkStatus();}absl::Status HolisticDetect::releaseGraph() {MP_RETURN_IF_ERROR(graph_.CloseInputStream(kInputStream));MP_RETURN_IF_ERROR(graph_.CloseInputStream(kOutputLandmarks));return graph_.WaitUntilDone();}
main.cpp
#include "holistic_detect.h"using namespace mp;HolisticDetect holisticDetect_;void call() {}int main(int argc, char* argv[]) {std::cout << "======= holistic ============" << std::endl;const char* model = argv[1];const char* video_path = argv[2];int isShow = 1;int res = holisticDetect_.initModel(model);if (res < 0) {std::cout << "======= initModel error ============" << std::endl;return -1;}res = holisticDetect_.detectVideo(video_path, isShow , call);if (res < 0)return -1;holisticDetect_.release();return 0;}
编译
bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 --action_env PYTHON_BIN_PATH="C://xx//python.exe" mediapipe/examples/desktop/holistic_tracking:holistic_tracking_sample --verbose_failures
运行
bazel-bin\mediapipe\examples\desktop\holistic_tracking\holistic_tracking_sample "mediapipe/graphs/holistic_tracking/holistic_tracking_cpu.pbtxt" "video/test.mp4"
运行成功, 则可获取人脸面部
468
个特征点 ,左手21
个特征点 , 右手21
个特征点 ,姿态33
个特征点。
其他模块 ☀️
- IRIS: https://blog.csdn.net/haiyangyunbao813/article/details/122225445?spm=1001.2014.3001.5502
- Pose: https://blog.csdn.net/haiyangyunbao813/article/details/119192951?spm=1001.2014.3001.5502
- Hand: https://blog.csdn.net/haiyangyunbao813/article/details/122464972?spm=1001.2014.3001.5502
- 其他待续…
青春不过几届世界杯
输赢并不是足球的全部 , 真正的热爱或许是笑着庆祝, 哭着鼓掌 。加油马儿,愿 2026
再战一届。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END