首先,对于创建词汇表,记录每一个单词出现的频率,并由此将特征数据集转为特征向量。最后转化为tensor格式 由于数据量庞大,这里先用PCA将数据降维,这里选择降到20个维度 将特征数据集和标签进行匹配,并每两个数据作为一个批次,全部数据进行随机的打乱
这里采用pytorch中的LSTM来得到LSTM层的状态 LSTM层总共设置4层,传入初始隐藏状态的细胞内容和输入内容。最后取得最后的时间步的输出
损失函数选择均方误差函数,优化器选择了Adam优化,总共训练4代 绘制出损失值的变化图像
将测试集的内容导入并做和训练集一样的预处理,然后将测试集放入模型中,将均方误差作为评价标准,计算平均误差。 并绘制出误差图像 误差都在0.003到0.005之间,说明模型能够正确预测情感。
import gzipimport pandas as pdfrom io import StringIOimport torchimport torch.nn as nnimport torch.optim as optimfeat_file_path = 'labeledBow.feat'with open(feat_file_path, 'r') as file:lines = file.readlines()# 逐行读取文件内容# 显示部分文件内容(可根据需要调整)# for line in lines[990:1000]:# 显示前10行内容# print(line)# In[2]:labels = []features = []for line in lines:parts = line.split(' ')labels.append(int(parts[0]))feats = {}for part in parts[1:]:index, value = part.split(':')feats[int(index)] = float(value)features.append(feats)# In[3]:# 1. 创建词汇表vocab = {}for feat_dict in features:vocab.update(feat_dict)# 创建特征索引到新的连续索引的映射feature_idx = {feat: idx for idx, feat in enumerate(sorted(vocab.keys()))}# 2. 创建特征向量max_features = len(vocab)feature_vectors = []for feat_dict in features:# 初始化特征向量vector = [0.0] * max_features# 填充特征向量for feat_idx, feat_value in feat_dict.items():vector[feature_idx[feat_idx]] = feat_valuefeature_vectors.append(vector)# 3. 转换为张量features_tensor = torch.tensor(feature_vectors, dtype=torch.float32)# 检查张量形状print(features_tensor.shape)# In[4]:from sklearn.decomposition import PCAimport torch# features_tensor 是特征张量,大小为 torch.Size([25000, 89527])# 这里将其转换为 NumPy 数组features_np = features_tensor.numpy()# 初始化PCA,选择需要降维的维度,这里假设降到100维pca = PCA(n_components=20)# 用PCA拟合数据features_reduced = pca.fit_transform(features_np)# 将降维后的数据转换回张量形式features_reduced_tensor = torch.tensor(features_reduced)# 打印降维后的数据大小print(features_reduced_tensor.size())# In[5]:import torchimport torch.nn as nnimport torch.optim as optimfrom torch.utils.data import DataLoader, TensorDatasetlabels_tensor = torch.tensor(labels, dtype=torch.float32)features_reduced = features_reduced_tensor.unsqueeze(1) labels_t = labels_tensor.unsqueeze(1) train_data = TensorDataset(features_reduced, labels_t)train_loader = DataLoader(train_data, batch_size=2, shuffle=True)class LSTMModel(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=4):super(LSTMModel, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)out, _ = self.lstm(x, (h0, c0))out = self.fc(out[:, -1, :])# 取最后一个时间步的输出return out# 定义模型参数input_size = 20hidden_size = 128num_layers = 4output_size = 1# 初始化模型、损失函数和优化器model = LSTMModel(input_size, hidden_size, output_size, num_layers)criterion = nn.MSELoss()optimizer = optim.Adam(model.parameters(), lr=0.0001)losses = []# 存储损失值# 训练模型num_epochs = 5device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model.to(device)for epoch in range(num_epochs):for i, (inputs, targets) in enumerate(train_loader):inputs, targets = inputs.to(device), targets.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs.squeeze(), targets.squeeze())loss.backward()optimizer.step()losses.append(loss.item())# 记录损失值if (i+1) % 2 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item()}')# In[6]:import torchimport torch.nn as nnimport torch.optim as optimfrom torch.utils.data import DataLoader, TensorDatasetimport matplotlib.pyplot as plt# 绘制损失值变化图plt.plot(losses, label='Training Loss')plt.xlabel('Training Steps')plt.ylabel('Loss')plt.title('Training Loss over Steps')plt.legend()plt.show()# In[7]:feat_file_path = 'labeledBow_test.feat'with open(feat_file_path, 'r') as file:lines = file.readlines()# 逐行读取文件内容labels_test = []features_test = []for line in lines:parts = line.split(' ')labels_test.append(int(parts[0]))feats = {}for part in parts[1:]:index, value = part.split(':')feats[int(index)] = float(value)features_test.append(feats)# In[8]:# 1. 创建词汇表vocab = {}for feat_dict in features_test:vocab.update(feat_dict)# 创建特征索引到新的连续索引的映射feature_idx = {feat: idx for idx, feat in enumerate(sorted(vocab.keys()))}# 2. 创建特征向量max_features = len(vocab)feature_vectors = []for feat_dict in features_test:# 初始化特征向量vector = [0.0] * max_features# 填充特征向量for feat_idx, feat_value in feat_dict.items():vector[feature_idx[feat_idx]] = feat_valuefeature_vectors.append(vector)# 3. 转换为张量features_tensor = torch.tensor(feature_vectors, dtype=torch.float32)# 检查张量形状print(features_tensor.shape)# In[9]:from sklearn.decomposition import PCAimport torch# features_tensor 是特征张量,大小为 torch.Size([25000, 89527])# 这里将其转换为 NumPy 数组features_np = features_tensor.numpy()# 初始化PCA,选择需要降维的维度,这里假设降到100维pca = PCA(n_components=20)# 用PCA拟合数据features_reduced = pca.fit_transform(features_np)# 将降维后的数据转换回张量形式features_reduced_tensor = torch.tensor(features_reduced)# 打印降维后的数据大小print(features_reduced_tensor.size())# In[14]:from torch.utils.data import DataLoader, TensorDatasetlabels_tensor = torch.tensor(labels_test, dtype=torch.float32)features_reduced = features_reduced_tensor.unsqueeze(1) labels_t = labels_tensor.unsqueeze(1) train_data = TensorDataset(features_reduced, labels_t)train_loader = DataLoader(train_data, batch_size=2, shuffle=True)losses = []for epoch in range(num_epochs):for i, (inputs, targets) in enumerate(train_loader):inputs, targets = inputs.to(device), targets.to(device)outputs = model(inputs)loss = criterion(outputs.squeeze(), targets.squeeze())losses.append(loss.item()/len(train_loader))if (i+1) % 2 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item()/len(train_loader)}')# In[15]:plt.plot(losses, label='Training Loss')plt.xlabel('Training Steps')plt.ylabel('Loss')plt.title('Training Loss over Steps')plt.legend()plt.show()
本文由博客一文多发平台 OpenWrite 发布!