目录
一、优先级队列
(1)概念
二、优先级队列的模拟实现
(1)堆的概念
(2)堆的存储方式
(3)堆的创建
堆向下调整
(4)堆的插入与删除
堆的插入
堆的删除
三、常用接口介绍
1、PriorityQueue的特性
2、PriorityQueue常用接口介绍
(1)优先级队列的构造
(2)插入/删除/获取优先级最高的元素
四、堆排序
一、优先级队列
(1)概念
前面介绍过队列,队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话.在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。
二、优先级队列的模拟实现
JDK1.8 中的 PriorityQueue底层使用了堆这种数据结构 ,而堆实际就是在完全二叉树的基础上进行了一些调整。
(1)堆的概念
如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。 堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值; 堆总是一棵完全二叉树。
大根堆和小根堆的示例图如下:
(2)堆的存储方式
从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。 将元素存储到数组中后,可以根据二叉树性质对树进行还原。假设i为节点在数组中的下标,则有:
如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i – 1)/2 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子
(3)堆的创建
堆向下调整
我们来思考一个问题:对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?
仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。
向下过程(以小堆为例):
1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子) 2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在 (1)parent右孩子是否存在,存在找到左右孩子中最小的孩子,让 child 进行标 (2)将parent 与较小的孩子 child 比较,如果:
parent 小于较小的孩子 child ,调整结束 否则:交换 parent 与较小的孩子 child ,交换完成之后, parent 中大的元素向下移动,可能导致子树不满足对的性质,因此需要继续向下调整,即parent = child ; child = parent*2+1; 然后继续 2 。
public void shiftDown(int[] array, int parent) {// child先标记parent的左孩子,因为parent可能右左没有右int child = 2 * parent + 1;int size = array.length;while (child < size) {// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记if(child+1 < size && array[child+1] < array[child]){child += 1;}// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了if (array[parent] <= array[child]) {break;}else{// 将双亲与较小的孩子交换int t = array[parent];array[parent] = array[child];array[child] = t;// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整parent = child;child = parent * 2 + 1;}}}
注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
时间复杂度分析: 最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O()
堆的创建
那对于普通的序列 { 1,5,3,8,7,6 } ,即根节点的左右子树不满足堆的特性,又该如何调整呢? 此时,我们只需要从倒数第一个非叶子结点开始,依次进行向下调整即可。
public static void createHeap(int[] array) {// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整int root = ((array.length-2)>>1);for (; root >= 0; root--) {shiftDown(array, root);}}
时间复杂度的计算:
因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
因此:建堆的时间复杂度为O(N)。
(4)堆的插入与删除
堆的插入
堆的插入总共需要两个步骤:
1. 先将元素放入到底层空间中(注意:空间不够时需要扩容) 2. 将最后新插入的节点向上调整,直到满足堆的性质
向上调整的代码如下:
public void shiftUp(int child) {// 找到child的双亲int parent = (child - 1) / 2;while (child > 0) {// 如果双亲比孩子大,parent满足堆的性质,调整结束if (array[parent] > array[child]) {break;}else{// 将双亲与孩子节点进行交换int t = array[parent];array[parent] = array[child];array[child] = t;// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增child = parent;parent = (child - 1) / 2;}}}
堆的删除
注意:堆的删除一定删除的是堆顶元素。具体如下:
1. 将堆顶元素对堆中最后一个元素交换 2. 将堆中有效数据个数减少一个 3. 对堆顶元素进行向下调整
三、常用接口介绍
1、PriorityQueue的特性
Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,本文主要介绍PriorityQueue。 关于PriorityQueue的使用要注意:
1. 使用时必须导入PriorityQueue所在的包,即:
import java.util.PriorityQueue;
2. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出 ClassCastException异常 3. 不能插入null对象,否则会抛出NullPointerException 4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容 5. 插入和删除元素的时间复杂度为O(logN)6. PriorityQueue底层使用了堆数据结构 7. PriorityQueue默认情况下是小堆—即每次获取到的元素都是最小的元素
2、PriorityQueue常用接口介绍
(1)优先级队列的构造
此处只是列出了PriorityQueue中常见的几种构造方式,其他的可以参考帮助文档。
static void TestPriorityQueue(){// 创建一个空的优先级队列,底层默认容量是11PriorityQueue q1 = new PriorityQueue();// 创建一个空的优先级队列,底层的容量为initialCapacityPriorityQueue q2 = new PriorityQueue(100);ArrayList list = new ArrayList();list.add(4);list.add(3);list.add(2);list.add(1);// 用ArrayList对象来构造一个优先级队列的对象// q3中已经包含了三个元素PriorityQueue q3 = new PriorityQueue(list);System.out.println(q3.size());System.out.println(q3.peek());}
注意:默认情况下,PriorityQueue队列是小堆,如果需要大堆需要用户提供比较器
// 用户自己定义的比较器:直接实现Comparator接口,然后重写该接口中的compare方法即可class IntCmp implements Comparator{@Overridepublic int compare(Integer o1, Integer o2) {return o2-o1;}}public class TestPriorityQueue {public static void main(String[] args) {PriorityQueue p = new PriorityQueue(new IntCmp());p.offer(4);p.offer(3);p.offer(2);p.offer(1);p.offer(5);System.out.println(p.peek());}}
此时创建出来的就是一个大堆。
(2)插入/删除/获取优先级最高的元素
static void TestPriorityQueue2(){int[] arr = {4,1,9,2,8,0,7,3,6,5};// 一般在创建优先级队列对象时,如果知道元素个数,建议就直接将底层容量给好// 否则在插入时需要不多的扩容// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低PriorityQueue q = new PriorityQueue(arr.length);for (int e: arr) {q.offer(e);}System.out.println(q.size()); // 打印优先级队列中有效元素个数System.out.println(q.peek()); // 获取优先级最高的元素// 从优先级队列中删除两个元素之和,再次获取优先级最高的元素q.poll();q.poll();System.out.println(q.size()); // 打印优先级队列中有效元素个数System.out.println(q.peek()); // 获取优先级最高的元素q.offer(0);System.out.println(q.peek()); // 获取优先级最高的元素// 将优先级队列中的有效元素删除掉,检测其是否为空q.clear();if(q.isEmpty()){System.out.println("优先级队列已经为空!!!");}else{System.out.println("优先级队列不为空");}}
注意:以下是JDK 1.8中,PriorityQueue的扩容方式:
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;private void grow(int minCapacity) {int oldCapacity = queue.length;// Double size if small; else grow by 50%int newCapacity = oldCapacity + ((oldCapacity 优先级队列的扩容说明:如果容量小于 64 时,是按照 oldCapacity 的 2 倍方式扩容的 如果容量大于等于 64 ,是按照 oldCapacity 的 1.5 倍方式扩容的 如果容量超过 MAX_ARRAY_SIZE ,按照 MAX_ARRAY_SIZE 来进行扩容
四、堆排序
堆排序即利用堆的思想来进行排序,总共分为两个步骤:1. 建堆 升序:建大堆 降序:建小堆 2. 利用堆删除思想来进行排序 建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。