博客主页:【小扳_-CSDN博客】
❤感谢大家点赞收藏⭐评论✍

文章目录

1.0 二叉搜索树的概述

2.0 二叉搜索树的成员变量及其构造方法

3.0 实现二叉树的核心接口

3.1实现二叉搜索树 – 获取值get(int key)

3.2实现二叉搜索树 – 获取最小的关键字min(BinaryNode node)

3.3实现二叉搜索树 -获取最大的关键字max(BinaryNode node)

3.4实现二叉搜索树 – 增、更新 put( int key, Object value)

3.5 实现二叉搜索树 – 查找关键字的后驱节点successor(int key)

3.6 实现二叉搜索树 -查找关键字的前驱节点predecessor(int key)

3.7 实现二叉搜索树 – 删除关键字节点 delete(int key)

3.8 实现二叉搜索树 – 查找范围小于关键字的节点值less(int key)

3.9实现二叉搜索树 – 查找范围大于关键字的节点值greater(int key)

4.0 实现二叉搜索树 – 查找范围大于 k1 且小于 k2 关键字的节点值between(int k1, int k2)

5.0 实现二叉搜索树核心方法的完整代码


1.0 二叉搜索树的概述

二叉搜索树是一种数据结构,用于存储数据并支持快速的插入、删除和搜索操作。它是一种树形结构。

它具有以下特点:

每个节点最多有两个子节点,分别称为左子节点和右子节点。

对于每个节点,其左子节点的值小于该节点的值,右子节点的值大于该节点的值。

中序遍历二叉搜索树可以得到有序的元素序列。

由于其特性,二叉搜索树在插入、删除和搜索操作上具有较高的效率。在平均情况下,这些操作的时间复杂度为 O(log n),其中 n 为树中节点的数量。然而,如果树的结构不平衡,最坏情况下这些操作的时间复杂度可能会达到 O(n)。由于其高效的搜索特性,二叉搜索树常被用于实现关联数组和集合等数据结构。然而,为了避免树的结构不平衡导致性能下降,人们也发展了平衡二叉搜索树(如红黑树、AVL树)等变种。

2.0 二叉搜索树的成员变量及其构造方法

外部类成员变量有:根节点节点类(内部类)

外部类构造方法:默认的构造方法,对外公开二叉搜索树的核心方法

节点类的成员变量有:

– key 关键字:相对比一般的二叉树,二叉搜索树可以明显提高增删查改的效率原因在于关键字,可以根据比较两个关键字的大小进行操作。

– value 值:作用则为存放值。

– left :链接左节点。

– right:链接右节点。

节点类的构造方法:

带两个参数的构造方法:参数为 key 、value

带四个参数的构造方法:参数为 key 、value 、left 、right

代码如下:

public class BinaryTree {BinaryNode root = null;static class BinaryNode {int key;Object value;BinaryNode left;BinaryNode right;public BinaryNode(int kty, Object value) {this.key = kty;this.value = value;}public BinaryNode(int key, Object value, BinaryNode left, BinaryNode right) {this.key = key;this.value = value;this.left = left;this.right = right;}}}

补充二叉搜索树在增、删、查、改的效率高的原因:

二叉搜索树的高效性与其关键字的特性密切相关。二叉搜索树的关键特性是,对于每个节点,其左子节点的值小于该节点的值,右子节点的值大于该节点的值。这种特性使得在二叉搜索树中进行搜索、插入和删除操作时,可以通过比较关键字的大小来快速定位目标节点,从而实现高效的操作。在平均情况下,这些操作的时间复杂度为 O(log n),其中 n 为树中节点的数量。因此,关键字的有序性是二叉搜索树能够实现高效操作的关键原因之一。

3.0 实现二叉树的核心接口

​public interface BinarySearchTreeInterface {/** *查找 key 对应的 value */Object get(int key);/** * 查找最小关键字对应值 */Object min();/** * 查找最大关键字对应值 */Object max();/** * 存储关键字与对应值 */void put(int key, Object value);/** * 查找关键字的后驱 */Object successor(int key);/** * 查找关键字的前驱 */Object predecessor(int key);/** * 根据关键字删除 */Object delete(int key);}​

3.1实现二叉搜索树 – 获取值get(int key)

实现思路为:从根节点开始,先判断当前的节点 p.key 与 key 进行比较,若p.key >key,则向左子树下潜 p = p.left ;若 p.key < key ,则向右子树下潜 p = p.right ;若 p.key == key ,则找到到了关键字,返回该节点的值 p.value 。按这样的规则一直循环下去,直到 p == null 退出循环,则说明没有找到对应的节点,则返回 null 。

代码如下:

@Overridepublic Object get(int key) {if (root == null) {return null;}BinaryNode p = root;while(p != null) {if (p.key > key) {p = p.left;}else if (p.key < key) {p = p.right;}else {return p.value;}}return null;}

若 root 为 null ,则不需要再进行下去了,直接结束。

3.2实现二叉搜索树 – 获取最小的关键字min(BinaryNode node)

实现思路:在某一个树中,需要得到最小的关键字,由根据数据结构的特点,最小的关键字在数的最左边,简单来说:一直向左子树遍历下去,直到 p.left == null 时,则该 p 节点就是最小的关键字了。然后找到了最小的节点,返回该节点的值即可。

代码如下:

非递归实现:

@Overridepublic Object min() {if (root == null) {return null;}BinaryNode p = root;while(p.left != null) {p = p.left;}return p.value;}//重载了一个方法,带参数的方法。public Object min(BinaryNode node) {if (node == null) {return null;}BinaryNode p = node;while (p.left != null) {p = p.left;}return p.value;}

递归实现:

//使用递归实现找最小关键字public Object minRecursion() {return doMin(root);}private Object doMin(BinaryNode node) {if (node == null) {return null;}if (node.left == null) {return node.value;}return doMin(node.left);}

3.3实现二叉搜索树 -获取最大的关键字max(BinaryNode node)

实现思路为:在某一个树中,需要得到最大的关键字,由根据数据结构的特点,最大的关键字在数的最右边,简单来说:一直向右子树遍历下去,直到 p.right == null 时,则该 p 节点就是最大的关键字了。然后找到了最大的节点,返回该节点的值即可。

代码如下:

非递归实现:

@Overridepublic Object max() {if (root == null) {return null;}BinaryNode p = root;while(p.right != null) {p = p.right;}return p.value;}//重载了一个带参数的方法public Object max(BinaryNode node) {if (node == null) {return null;}BinaryNode p = node;while (p.right != null) {p = p.right;}return p.value;}

递归实现:

//使用递归实现找最大关键字public Object maxRecursion() {return doMax(root);}private Object doMax(BinaryNode node) {if (node == null) {return null;}if (node.right == null) {return node.value;}return doMax(node.right);}

3.4实现二叉搜索树 – 增、更新 put( int key, Object value)

实现思路为:在二叉搜索树中先试着查找是否存在与 key 对应的节点 p.key 。若找到了,则为更新该值 p.value = value 即可。若找不到,则需要新增该关键字节点

具体来分析如何新增关键字,先定义 BinaryNode parent 、 BinaryNode p,p 指针在去比较 key 之前,先让 parent 指向 p 。最后循环结束后, p == null ,对于 parent 来说,此时正指着 p 节点的双亲节点。 接着创建一个新的节点,BinaryNode newNode = new BinaryNode(key, value) ,则此时还需要考虑的是,该新的节点该连接到 parent 的左孩子还是右孩子 ?需要比较 parent.key 与 newNode.key 的大小即可,若parent.key >newNode.key,则链接到 parent.left处;若 prent.key < newNode.key ,则连接到 parent.right 处。

代码如下:

@Overridepublic void put(int key, Object value) {if (root == null) {root = new BinaryNode(key,value);return;}BinaryNode p = root;BinaryNode parent = null;while (p != null) {parent = p;if (p.key > key) {p = p.left;} else if (p.key < key) {p = p.right;}else {p.value = value;return;}}//该树没有该关键字,因此需要新建节点对象BinaryNode newNode = new BinaryNode(key,value);if (newNode.key < parent.key) {parent.left = newNode;}else {parent.right = newNode;}}

3.5 实现二叉搜索树 – 查找关键字的后驱节点successor(int key)

具体实现思路为:先遍历找到该关键字的节点,若找不到,则返回 null ;若找到了,判断以下的两种情况,第一种情况:该节点有右子树,则该关键字的后驱为右子树的最小关键字;第二种情况:该节点没有右子树,则该关键字的后驱为从右向左而来的祖宗节点。最后返回该后驱节点的值

代码如下:

@Overridepublic Object successor(int key) {if (root == null) {return null;}//先找到该关键字节点BinaryNode p = root;BinaryNode sParent = null;while (p != null) {if (p.key > key) {sParent = p;p = p.left;} else if (p.key < key) {p = p.right;}else {break;}}//没有找到关键字的情况if (p == null) {return null;}//情况一:该节点存在右子树,则该后继为右子树的最小关键字if (p.right != null) {return min(p.right);}//情况二:该节点不存在右子树,那么该后继就需要到祖宗从右向左的节点if (sParent == null) {//可能不存在后继节点,比如最大关键字的节点就没有后继节点了return null;}return sParent.value;}

3.6 实现二叉搜索树 -查找关键字的前驱节点predecessor(int key)

具体实现思路为:先对该二叉树进行遍历寻找 key 的节点,若遍历结束还没找到,则返回 null ;若找到了,需要判断以下两种情况:

第一种情况:该节点有左子树,则该前驱节点为该左子树的最大关键字节点。

第二种情况:该节点没有左子树,则该前驱节点为从左向右而来的祖宗节点。

最后返回该前驱节点的值。

代码如下:

@Overridepublic Object predecessor(int key) {if (root == null) {return null;}BinaryNode p = root;BinaryNode sParent = null;while (p != null) {if (p.key > key) {p = p.left;} else if (p.key < key) {sParent = p;p = p.right;}else {break;}}if (p == null) {return null;}//情况一:存在左子树,则该前任就为左子树的最大关键字节点if (p.left != null) {return max(p.left);}//情况二:不存在左子树,则该前任为从祖宗自左向右而来的节点if (sParent == null) {return null;}return sParent.value;}

3.7 实现二叉搜索树 – 删除关键字节点 delete(int key)

具体实现思路为:先遍历二叉树,查找该关键字节点。若遍历结束了还没有找到,则返回 null ;若找到了,则需要以下四种情况:

第一种情况:找到该删除的节点只有左子树。则直接让该左子树 “托付” 给删除节点的双亲节点,这就删除了该节点了。至于左子树是链接到双亲节点的左边还有右边这个问题,根据该数据结构的特点,由该删除节点来决定。若删除的节点之前是链接该双亲节点的左边,则左子树也是链接到该双亲节点的左边;若删除的节点之前是链接该双亲节点的右边,则左子树也是链接到该双亲节点的右边。

第二种情况:找到该删除的节点只有右子树。则直接让该右子树 “托付” 给删除节点的双亲节点,这就删除了该节点了。至于右子树是链接到双亲节点的左边还有右边这个问题,根据该数据结构的特点,由该删除节点来决定。若删除的节点之前是链接该双亲节点的左边,则右子树也是链接到该双亲节点的左边;若删除的节点之前是链接该双亲节点的右边,则右子树也是链接到该双亲节点的右边。

第三种情况:找到该删除节点都没有左右子树。该情况可以归并到以上两种情况的任意一种处理均可。

第四种情况:找到该删除节点都有左右子树。分两步:第一步,先找后继节点来替换删除节点,找该后继节点直接到删除节点的右子树中找最小的关键字节点即可。第二步,需要先将后继节点的右子树处理好,需要将该右子树交给替换节点的双亲节点链接。还需要判断两种情况:第一种情况,若删除节点与替换节点是紧挨着的,对替换节点的右子树无需要求,只对左子树重新赋值;若删除节点与替换节点不是紧挨着的关系,对替换节点的左右子树都要重新赋值。

代码如下:

@Overridepublic Object delete(int key) {if (root == null) {return null;}BinaryNode p = root;BinaryNode parent = null;while (p != null) {if (p.key > key) {parent = p;p = p.left;} else if (p.key < key) {parent = p;p = p.right;}else {break;}}//没有找到该关键字的节点if (p == null) {return null;}//情况一、二、三:只有左子树或者右子树或者都没有if (p.right == null) {shift(parent,p,p.left);} else if (p.left == null) {shift(parent,p,p.right);}else {//情况四:有左右子树//替换节点采用删除节点的后继节点//先看被删的节点与替换的节点是否为紧挨在一起BinaryNode s = p.right;BinaryNode sParent = p;while (s.left != null) {sParent = s;s = s.left;}if (sParent != p) {//说明没有紧挨在一起,则需要将替换节点的右子树进行处理shift(sParent,s,s.right);s.right = p.right;}shift(parent,p,s);s.left = p.left;}return p.value;}private void shift(BinaryNode parent, BinaryNode delete, BinaryNode next) {if (parent == null) {root = next;} else if (parent.left == delete) {parent.left = next;}else if (parent.right == delete){parent.right = next;}}

为了方便,将删除节点与替换节点之间的替换操作单独成一个方法出来。

递归实现删除关键字 key 节点,同理,也是细分为以上描述的四种情况。

代码如下:

//使用递归实现删除关键字节点public BinaryNode deleteRecursion(BinaryNode node , int key) {if (node == null) {return null;}if (node.key > key) {node.left = deleteRecursion(node.left,key);return node;} else if (node.key < key) {node.right = deleteRecursion(node.right,key);return node;}else {if (node.right == null) {return node.left;} else if (node.left == null) {return node.right;}else {BinaryNode s = node.right;while (s.left != null) {s = s.left;}s.right = deleteRecursion(node.right,s.key);s.left = node.left;return s;}}}

3.8 实现二叉搜索树 – 查找范围小于关键字的节点值less(int key)

具体实现思路为:利用中序遍历,来遍历每一个节点的 key ,若小于 key 的节点,直接放到数组容器中;若大于 key 的,可以直接退出循环。最后返回该数组容器即可

代码如下:

//找 < key 的所有 valuepublic List less(int key) {if (root == null) {return null;}ArrayList result = new ArrayList();BinaryNode p = root;Stack stack = new Stack();while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key < key) {result.add(pop.value);}else {break;}p = pop.right;}}return result;}

3.9实现二叉搜索树 – 查找范围大于关键字的节点值greater(int key)

具体实现思路:利用中序遍历,来遍历每一个节点的 key ,若大于 key 的节点,直接放到数组容器中。

代码如下:

//找 > key 的所有 valuepublic List greater(int key) {if (root == null) {return null;}ArrayList result = new ArrayList();Stack stack = new Stack();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}p = pop.right;}}return result;}

该方法的改进:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树。因此只要小于 key 的关键字节点,直接退出循环

代码如下:

//改进思路:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树public List greater1(int key) {if (root == null) {return null;}ArrayList result = new ArrayList();Stack stack = new Stack();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null ) {stack.push(p);p = p.right;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}else {break;}p = pop.left;}}return result;}

4.0 实现二叉搜索树 – 查找范围大于 k1 且小于 k2 关键字的节点值between(int k1, int k2)

实现思路跟以上的思路没有什么区别,唯一需要注意的是,当前节点的 key > k2 则可以退出循环了。

代码如下:

//找到 >= k1 且 =< k2 的所有valuepublic List between(int k1, int k2) {if (root == null) {return null;}ArrayList result = new ArrayList();Stack stack = new Stack();BinaryNode p = root;while(p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key >= k1 && pop.key  k2) {break;}p = pop.right;}}return result;}

5.0 实现二叉搜索树核心方法的完整代码

实现接口代码:

import java.util.ArrayList;import java.util.List;import java.util.Stack;public class BinaryTree implements BinarySearchTreeInterface{BinaryNode root = null;static class BinaryNode {int key;Object value;BinaryNode left;BinaryNode right;public BinaryNode(int kty, Object value) {this.key = kty;this.value = value;}public BinaryNode(int key, Object value, BinaryNode left, BinaryNode right) {this.key = key;this.value = value;this.left = left;this.right = right;}}@Overridepublic Object get(int key) {if (root == null) {return null;}BinaryNode p = root;while(p != null) {if (p.key > key) {p = p.left;}else if (p.key  key) {p = p.left;} else if (p.key < key) {p = p.right;}else {p.value = value;return;}}//该树没有该关键字,因此需要新建节点对象BinaryNode newNode = new BinaryNode(key,value);if (newNode.key  key) {sParent = p;p = p.left;} else if (p.key  key) {p = p.left;} else if (p.key  key) {parent = p;p = p.left;} else if (p.key  key) {node.left = deleteRecursion(node.left,key);return node;} else if (node.key < key) {node.right = deleteRecursion(node.right,key);return node;}else {if (node.right == null) {return node.left;} else if (node.left == null) {return node.right;}else {BinaryNode s = node.right;while (s.left != null) {s = s.left;}s.right = deleteRecursion(node.right,s.key);s.left = node.left;return s;}}}//找 < key 的所有 valuepublic List less(int key) {if (root == null) {return null;}ArrayList result = new ArrayList();BinaryNode p = root;Stack stack = new Stack();while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key  key 的所有 valuepublic List greater(int key) {if (root == null) {return null;}ArrayList result = new ArrayList();Stack stack = new Stack();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}p = pop.right;}}return result;}//改进思路:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树public List greater1(int key) {if (root == null) {return null;}ArrayList result = new ArrayList();Stack stack = new Stack();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null ) {stack.push(p);p = p.right;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}else {break;}p = pop.left;}}return result;}//找到 >= k1 且 =< k2 的所有valuepublic List between(int k1, int k2) {if (root == null) {return null;}ArrayList result = new ArrayList();Stack stack = new Stack();BinaryNode p = root;while(p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key >= k1 && pop.key  k2) {break;}p = pop.right;}}return result;}}

Copyright © maxssl.com 版权所有 浙ICP备2022011180号