一、什么是Big Key?

大key,其实不是说比较大的主键,而是值比较大的key。key往往是程序可以自行设置的,value往往不受程序控制,因此可能导致value很大。
redis中这些Big Key对应的value值很大,在序列化/反序列化过程中花费的时间很大,因此当我们操作Big Key时,通常比较耗时,这就可能导致redis发生阻塞,从而降低redis性能。

用几个实际的例子对大Key的特征进行描述:

  • 一个String类型的Key,它的值为10k(数据过大);
  • 一个List类型的Key,它的列表数量为20000个(列表数量过多);
  • 一个ZSet类型的Key,它的成员数量为10000个(成员数量过多);
  • 一个Hash格式的Key,它的成员数量虽然只有1000个但这些成员的value总大小为100MB(成员体积过大);

在实际业务中,大Key的判定仍然需要根据Redis的实际使用场景、业务场景来进行综合判断。通常都会以数据大小与成员数量来判定。也不要以为redis能存多大,这才多大,但不代表你能存那么,当量变引起质变的时候,就不能这么存了。如果你redis里面只装一个String的key,其实你的value值为512也不是不可以。

二、大Key产生的场景?

1、redis数据结构使用不恰当

将Redis用在并不适合其能力的场景,造成Key的value过大,如使用String类型的Key存放大体积二进制文件型数据。

2、未及时清理垃圾数据

没有对无效数据进行定期清理,造成如HASH类型Key中的成员持续不断的增加。即一直往value塞数据,却没有删除机制,value只会越来越大。

3、对业务预估不准确

业务上线前规划设计考虑不足没有对Key中的成员进行合理的拆分,造成个别Key中的成员数量过多。

4、明星、网红的粉丝列表、某条热点新闻的评论列表

假设我们使用List数据结构保存某个明星/网红的粉丝,或者保存热点新闻的评论列表,因为粉丝数量巨大,热点新闻因为点击率、评论数会很多,这样List集合中存放的元素就会很多,可能导致value过大,进而产生Big Key问题。前面梁静茹&芒果频道的事件就有点类似,热度这东西很奇怪,说上去就上去了,贴吧是明星效益。

三、Big Key的危害?

1、阻塞请求

Big Key对应的value较大,我们对其进行读写的时候,需要耗费较长的时间,这样就可能阻塞后续的请求处理。Redis的核心线程是单线程,单线程中请求任务的处理是串行的,前面的任务完不成,后面的任务就处理不了。

2、内存增大

读取Big Key耗费的内存比正常Key会有所增大,如果不断变大,可能会引发OOM(内存溢出),或达到redis的最大内存maxmemory设置值引发写阻塞或重要Key被逐出。

3、阻塞网络

读取单value较大时会占用服务器网卡较多带宽,自身变慢的同时可能会影响该服务器上的其他Redis实例或者应用。

4、影响主从同步、主从切换

删除一个大Key造成主库较长时间的阻塞并引发同步中断或主从切换。

四、如何识别Big Key?

1、使用redis自带的命令识别

例如可以使用Redis官方客户端redis-cli加上–bigkeys参数,可以找到某个实例5种数据类型(String、hash、list、set、zset)的最大key。
优点是可以在线扫描,不阻塞服务;缺点是信息较少,内容不够精确。

2、使用debug object key命令

根据传入的对象(Key的名称)来对Key进行分析并返回大量数据,其中serializedlength的值为该Key的序列化长度,需要注意的是,Key的序列化长度并不等同于它在内存空间中的真实长度,此外,debug object属于调试命令,运行代价较大,并且在其运行时,进入Redis的其余请求将会被阻塞直到其执行完毕。并且每次只能查找单个key的信息,官方不推荐使用。

3、redis-rdb-tools开源工具

这种方式是在redis实例上执行bgsave,bgsave会触发redis的快照备份,生成rdb持久化文件,然后对dump出来的rdb文件进行分析,找到其中的大key。
GitHub地址:https://github.com/sripathikrishnan/redis-rdb-tools
优点在于获取的key信息详细、可选参数多、支持定制化需求,结果信息可选择json或csv格式,后续处理方便,其缺点是需要离线操作,获取结果时间较长。

五、如何解决Big Key问题?

要解决Big Key问题,无非就是减小key对应的value值的大小,也就是对于String数据结构的话,减少存储的字符串的长度;对于List、Hash、Set、ZSet数据结构则是减少集合中元素的个数。

1、拆分

将一个Big Key拆分为多个key-value这样的小Key,并确保每个key的成员数量或者大小在合理范围内,然后再进行存储,通过get不同的key或者使用mget批量获取。

2、清理

对Redis中的大Key进行清理,从Redis中删除此类数据。Redis自4.0起提供了UNLINK命令,该命令能够以非阻塞的方式缓慢逐步的清理传入的Key,通过UNLINK,你可以安全的删除大Key甚至特大Key。

3、监控Redis的内存、网络带宽、超时等指标

通过监控系统并设置合理的Redis内存报警阈值来提醒我们此时可能有大Key正在产生,如:Redis内存使用率超过70%,Redis内存1小时内增长率超过20%等。

4、定期清理失效数据

如果某个Key有业务不断以增量方式写入大量的数据,并且忽略了其时效性,这样会导致大量的失效数据堆积。可以通过定时任务的方式,对失效数据进行清理。

5、压缩value

使用序列化、压缩算法将key的大小控制在合理范围内,但是需要注意序列化、反序列化都会带来一定的消耗。如果压缩后,value还是很大,那么可以进一步对key进行拆分。

六、总结:

发现big key

redis-cli --bigkeys

MEMORY USAGE

此命令给出一个key和它的值在RAM中所占用的字节数。返回的结果是key的值以及所管理该key分配的内存总字节数。对于嵌套数据类型,可以使用选项SAMPLES,其中count表示抽样的元素个数,默认值为5。当需要抽样所有元素时,使用SAMPLES 0。

分析big key

为啥我认为要有这一步,和上午提的结合业务进行分析,进行大key的处理。这一点在这里谈都是空谈,需要结合贵公司业务。

处理big key

删除:

我任务只要业务接收,能少存就经历少存。最好不要存(手动狗头保命!!!)

缩容:

将我们的大key进行整理缩容也是业务上可以考虑的,但工作量肯定比直接删除大些。

替代:

我们是不是考虑哈用其他的存储工具来存储这部分数据,满足客户快速查询?ES考虑一下不?

其他

在这里记录一个生产调优注意点:
redis.conf配置文件LAZY FREEING 相关说明:

修改配置: