最新|全新风格的YOLOv5和YOLOv7网络结构解析图

本篇分享一下绘制的全新风格YOLOv5网络结构图YOLOv7网络结构图

文章目录

    • YOLOv5 网络结构图
    • YOLOv7 网络结构图
    • YOLOv5 网络配置
    • YOLOv7 网络配置

YOLOv5 网络结构图

YOLOv5 结构:

Backbone: New CSP-Darknet53
Neck: SPPF, CSPPAN
Head: YOLOv3 Head

图片[1] - 最新|全新风格的YOLOv5和YOLOv7网络结构解析图 - MaxSSL

By YOLOAir CSDN芒果汁没有芒果

YOLOv7 网络结构图

论文:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

YOLOv7 结构:

Backbone: New ELANCSP
Neck: SPPCSPC, ELANPAN
Head: YOLOv7 Head

图片[2] - 最新|全新风格的YOLOv5和YOLOv7网络结构解析图 - MaxSSL
By YOLOAir CSDN芒果汁没有芒果

YOLOv5 网络配置

# YOLOv5  by Ultralytics, GPL-3.0 license# Parametersnc: 80  # number of classesdepth_multiple: 1.0  # model depth multiplewidth_multiple: 1.0  # layer channel multipleanchors:  - [10,13, 16,30, 33,23]  # P3/8  - [30,61, 62,45, 59,119]  # P4/16  - [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbonebackbone:  # [from, number, module, args]  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4   [-1, 3, C3, [128]],   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8   [-1, 6, C3, [256]],   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16   [-1, 9, C3, [512]],   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32   [-1, 3, C3, [1024]],   [-1, 1, SPPF, [1024, 5]],  # 9  ]# YOLOv5 v6.0 headhead:  [[-1, 1, Conv, [512, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [[-1, 6], 1, Concat, [1]],  # cat backbone P4   [-1, 3, C3, [512, False]],  # 13   [-1, 1, Conv, [256, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [[-1, 4], 1, Concat, [1]],  # cat backbone P3   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)   [-1, 1, Conv, [256, 3, 2]],   [[-1, 14], 1, Concat, [1]],  # cat head P4   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)   [-1, 1, Conv, [512, 3, 2]],   [[-1, 10], 1, Concat, [1]],  # cat head P5   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)  ]

YOLOv7 网络配置

# parametersnc: 80  # number of classesdepth_multiple: 1.0  # model depth multiplewidth_multiple: 1.0  # layer channel multiple# anchorsanchors:  - [12,16, 19,36, 40,28]  # P3/8  - [36,75, 76,55, 72,146]  # P4/16  - [142,110, 192,243, 459,401]  # P5/32# yolov7 backbonebackbone:  # [from, number, module, args]  [[-1, 1, Conv, [32, 3, 1]],  # 0     [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2         [-1, 1, Conv, [64, 3, 1]],      [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4     [-1, 1, Conv, [64, 1, 1]],   [-2, 1, Conv, [64, 1, 1]],   [-1, 1, Conv, [64, 3, 1]],   [-1, 1, Conv, [64, 3, 1]],   [-1, 1, Conv, [64, 3, 1]],   [-1, 1, Conv, [64, 3, 1]],   [[-1, -3, -5, -6], 1, Concat, [1]],   [-1, 1, Conv, [256, 1, 1]],  # 11            [-1, 1, MP, []],   [-1, 1, Conv, [128, 1, 1]],   [-3, 1, Conv, [128, 1, 1]],   [-1, 1, Conv, [128, 3, 2]],   [[-1, -3], 1, Concat, [1]],  # 16-P3/8     [-1, 1, Conv, [128, 1, 1]],   [-2, 1, Conv, [128, 1, 1]],   [-1, 1, Conv, [128, 3, 1]],   [-1, 1, Conv, [128, 3, 1]],   [-1, 1, Conv, [128, 3, 1]],   [-1, 1, Conv, [128, 3, 1]],   [[-1, -3, -5, -6], 1, Concat, [1]],   [-1, 1, Conv, [512, 1, 1]],  # 24            [-1, 1, MP, []],   [-1, 1, Conv, [256, 1, 1]],   [-3, 1, Conv, [256, 1, 1]],   [-1, 1, Conv, [256, 3, 2]],   [[-1, -3], 1, Concat, [1]],  # 29-P4/16     [-1, 1, Conv, [256, 1, 1]],   [-2, 1, Conv, [256, 1, 1]],   [-1, 1, Conv, [256, 3, 1]],   [-1, 1, Conv, [256, 3, 1]],   [-1, 1, Conv, [256, 3, 1]],   [-1, 1, Conv, [256, 3, 1]],   [[-1, -3, -5, -6], 1, Concat, [1]],   [-1, 1, Conv, [1024, 1, 1]],  # 37            [-1, 1, MP, []],   [-1, 1, Conv, [512, 1, 1]],   [-3, 1, Conv, [512, 1, 1]],   [-1, 1, Conv, [512, 3, 2]],   [[-1, -3], 1, Concat, [1]],  # 42-P5/32     [-1, 1, Conv, [256, 1, 1]],   [-2, 1, Conv, [256, 1, 1]],   [-1, 1, Conv, [256, 3, 1]],   [-1, 1, Conv, [256, 3, 1]],   [-1, 1, Conv, [256, 3, 1]],   [-1, 1, Conv, [256, 3, 1]],   [[-1, -3, -5, -6], 1, Concat, [1]],   [-1, 1, Conv, [1024, 1, 1]],  # 50  ]# yolov7 headhead:  [[-1, 1, SPPCSPC, [512]], # 51     [-1, 1, Conv, [256, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [37, 1, Conv, [256, 1, 1]], # route backbone P4   [[-1, -2], 1, Concat, [1]],      [-1, 1, Conv, [256, 1, 1]],   [-2, 1, Conv, [256, 1, 1]],   [-1, 1, Conv, [128, 3, 1]],   [-1, 1, Conv, [128, 3, 1]],   [-1, 1, Conv, [128, 3, 1]],   [-1, 1, Conv, [128, 3, 1]],   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],   [-1, 1, Conv, [256, 1, 1]], # 63      [-1, 1, Conv, [128, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [24, 1, Conv, [128, 1, 1]], # route backbone P3   [[-1, -2], 1, Concat, [1]],      [-1, 1, Conv, [128, 1, 1]],   [-2, 1, Conv, [128, 1, 1]],   [-1, 1, Conv, [64, 3, 1]],   [-1, 1, Conv, [64, 3, 1]],   [-1, 1, Conv, [64, 3, 1]],   [-1, 1, Conv, [64, 3, 1]],   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],   [-1, 1, Conv, [128, 1, 1]], # 75         [-1, 1, MP, []],   [-1, 1, Conv, [128, 1, 1]],   [-3, 1, Conv, [128, 1, 1]],   [-1, 1, Conv, [128, 3, 2]],   [[-1, -3, 63], 1, Concat, [1]],      [-1, 1, Conv, [256, 1, 1]],   [-2, 1, Conv, [256, 1, 1]],   [-1, 1, Conv, [128, 3, 1]],   [-1, 1, Conv, [128, 3, 1]],   [-1, 1, Conv, [128, 3, 1]],   [-1, 1, Conv, [128, 3, 1]],   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],   [-1, 1, Conv, [256, 1, 1]], # 88         [-1, 1, MP, []],   [-1, 1, Conv, [256, 1, 1]],   [-3, 1, Conv, [256, 1, 1]],   [-1, 1, Conv, [256, 3, 2]],   [[-1, -3, 51], 1, Concat, [1]],      [-1, 1, Conv, [512, 1, 1]],   [-2, 1, Conv, [512, 1, 1]],   [-1, 1, Conv, [256, 3, 1]],   [-1, 1, Conv, [256, 3, 1]],   [-1, 1, Conv, [256, 3, 1]],   [-1, 1, Conv, [256, 3, 1]],   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],   [-1, 1, Conv, [512, 1, 1]], # 101      [75, 1, RepConv, [256, 3, 1]],   [88, 1, RepConv, [512, 3, 1]],   [101, 1, RepConv, [1024, 3, 1]],   [[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)  ]
© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享