本篇分享一下绘制的全新风格YOLOv5网络结构图
和YOLOv7网络结构图
文章目录
- YOLOv5 网络结构图
- YOLOv7 网络结构图
- YOLOv5 网络配置
- YOLOv7 网络配置
YOLOv5 网络结构图
YOLOv5 结构:
Backbone: New CSP-Darknet53
Neck: SPPF, CSPPAN
Head: YOLOv3 Head
By YOLOAir CSDN芒果汁没有芒果
YOLOv7 网络结构图
论文:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
YOLOv7 结构:
Backbone: New ELANCSP
Neck: SPPCSPC, ELANPAN
Head: YOLOv7 Head
By YOLOAir CSDN芒果汁没有芒果
YOLOv5 网络配置
# YOLOv5 by Ultralytics, GPL-3.0 license# Parametersnc: 80 # number of classesdepth_multiple: 1.0 # model depth multiplewidth_multiple: 1.0 # layer channel multipleanchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32# YOLOv5 v6.0 backbonebackbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ]# YOLOv5 v6.0 headhead: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]
YOLOv7 网络配置
# parametersnc: 80 # number of classesdepth_multiple: 1.0 # model depth multiplewidth_multiple: 1.0 # layer channel multiple# anchorsanchors: - [12,16, 19,36, 40,28] # P3/8 - [36,75, 76,55, 72,146] # P4/16 - [142,110, 192,243, 459,401] # P5/32# yolov7 backbonebackbone: # [from, number, module, args] [[-1, 1, Conv, [32, 3, 1]], # 0 [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 [-1, 1, Conv, [64, 3, 1]], [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 [-1, 1, Conv, [64, 1, 1]], [-2, 1, Conv, [64, 1, 1]], [-1, 1, Conv, [64, 3, 1]], [-1, 1, Conv, [64, 3, 1]], [-1, 1, Conv, [64, 3, 1]], [-1, 1, Conv, [64, 3, 1]], [[-1, -3, -5, -6], 1, Concat, [1]], [-1, 1, Conv, [256, 1, 1]], # 11 [-1, 1, MP, []], [-1, 1, Conv, [128, 1, 1]], [-3, 1, Conv, [128, 1, 1]], [-1, 1, Conv, [128, 3, 2]], [[-1, -3], 1, Concat, [1]], # 16-P3/8 [-1, 1, Conv, [128, 1, 1]], [-2, 1, Conv, [128, 1, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [128, 3, 1]], [[-1, -3, -5, -6], 1, Concat, [1]], [-1, 1, Conv, [512, 1, 1]], # 24 [-1, 1, MP, []], [-1, 1, Conv, [256, 1, 1]], [-3, 1, Conv, [256, 1, 1]], [-1, 1, Conv, [256, 3, 2]], [[-1, -3], 1, Concat, [1]], # 29-P4/16 [-1, 1, Conv, [256, 1, 1]], [-2, 1, Conv, [256, 1, 1]], [-1, 1, Conv, [256, 3, 1]], [-1, 1, Conv, [256, 3, 1]], [-1, 1, Conv, [256, 3, 1]], [-1, 1, Conv, [256, 3, 1]], [[-1, -3, -5, -6], 1, Concat, [1]], [-1, 1, Conv, [1024, 1, 1]], # 37 [-1, 1, MP, []], [-1, 1, Conv, [512, 1, 1]], [-3, 1, Conv, [512, 1, 1]], [-1, 1, Conv, [512, 3, 2]], [[-1, -3], 1, Concat, [1]], # 42-P5/32 [-1, 1, Conv, [256, 1, 1]], [-2, 1, Conv, [256, 1, 1]], [-1, 1, Conv, [256, 3, 1]], [-1, 1, Conv, [256, 3, 1]], [-1, 1, Conv, [256, 3, 1]], [-1, 1, Conv, [256, 3, 1]], [[-1, -3, -5, -6], 1, Concat, [1]], [-1, 1, Conv, [1024, 1, 1]], # 50 ]# yolov7 headhead: [[-1, 1, SPPCSPC, [512]], # 51 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [37, 1, Conv, [256, 1, 1]], # route backbone P4 [[-1, -2], 1, Concat, [1]], [-1, 1, Conv, [256, 1, 1]], [-2, 1, Conv, [256, 1, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [128, 3, 1]], [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]], [-1, 1, Conv, [256, 1, 1]], # 63 [-1, 1, Conv, [128, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [24, 1, Conv, [128, 1, 1]], # route backbone P3 [[-1, -2], 1, Concat, [1]], [-1, 1, Conv, [128, 1, 1]], [-2, 1, Conv, [128, 1, 1]], [-1, 1, Conv, [64, 3, 1]], [-1, 1, Conv, [64, 3, 1]], [-1, 1, Conv, [64, 3, 1]], [-1, 1, Conv, [64, 3, 1]], [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]], [-1, 1, Conv, [128, 1, 1]], # 75 [-1, 1, MP, []], [-1, 1, Conv, [128, 1, 1]], [-3, 1, Conv, [128, 1, 1]], [-1, 1, Conv, [128, 3, 2]], [[-1, -3, 63], 1, Concat, [1]], [-1, 1, Conv, [256, 1, 1]], [-2, 1, Conv, [256, 1, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [128, 3, 1]], [-1, 1, Conv, [128, 3, 1]], [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]], [-1, 1, Conv, [256, 1, 1]], # 88 [-1, 1, MP, []], [-1, 1, Conv, [256, 1, 1]], [-3, 1, Conv, [256, 1, 1]], [-1, 1, Conv, [256, 3, 2]], [[-1, -3, 51], 1, Concat, [1]], [-1, 1, Conv, [512, 1, 1]], [-2, 1, Conv, [512, 1, 1]], [-1, 1, Conv, [256, 3, 1]], [-1, 1, Conv, [256, 3, 1]], [-1, 1, Conv, [256, 3, 1]], [-1, 1, Conv, [256, 3, 1]], [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]], [-1, 1, Conv, [512, 1, 1]], # 101 [75, 1, RepConv, [256, 3, 1]], [88, 1, RepConv, [512, 3, 1]], [101, 1, RepConv, [1024, 3, 1]], [[102,103,104], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5) ]
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END