目录

  • Abstract
  • Train
    • PreProcess
    • Architecture
      • Backbone
      • Neck
      • Head
    • Loss
      • Dice Loss
      • SmoothL1 Loss
  • Infer
    • PostProcess

写在前面:基于PaddleOCR代码库对其中所涉及到的算法进行代码简读,如果有必要可能会先研读一下原论文。

Abstract

  • 论文链接:arxiv
  • 应用场景:文本检测
  • 代码配置文件:configs/det/det_r50_vd_east.yml

TrainPreProcess

class EASTProcessTrain(object):    def __init__(self,                 image_shape=[512, 512],                 background_ratio=0.125,                 min_crop_side_ratio=0.1,                 min_text_size=10,                 **kwargs):        self.input_size = image_shape[1]        self.random_scale = np.array([0.5, 1, 2.0, 3.0])        self.background_ratio = background_ratio        self.min_crop_side_ratio = min_crop_side_ratio        self.min_text_size = min_text_size          ...    def __call__(self, data):        im = data['image']        text_polys = data['polys']        text_tags = data['ignore_tags']        if im is None:            return None        if text_polys.shape[0] == 0:            return None        #add rotate cases        if np.random.rand() < 0.5:            # 旋转图片和文本框(90,180,270)            im, text_polys = self.rotate_im_poly(im, text_polys)        h, w, _ = im.shape        # 限制文本框坐标到有效范围内、检查文本框的有效性(基于文本框的面积)、以及点的顺序是否是顺时针        text_polys, text_tags = self.check_and_validate_polys(text_polys,                                                              text_tags, h, w)        if text_polys.shape[0] == 0:            return None        # 随机缩放图片以及文本框        rd_scale = np.random.choice(self.random_scale)        im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)        text_polys *= rd_scale        if np.random.rand() < self.background_ratio:            # 只切纯背景图,如果有文本框会返回None            outs = self.crop_background_infor(im, text_polys, text_tags)        else:            """            随机切图并以及crop图所包含的文本框,并基于缩小的文本框生成了几个label map:                - score_map: shape=[h,w],得分图,有文本的地方是1,其余地方为0                - geo_map: shape=[h,w,9]。前8个通道为缩小文本框内的像素到真实文本框的水平以及垂直距离,                           最后一个通道用来做loss归一化,其值为每个框最短边长的倒数                - training_mask: shape=[h,w],使无效文本框不参与训练,有效的地方为1,无效的地方为0            """            outs = self.crop_foreground_infor(im, text_polys, text_tags)        if outs is None:            return None        im, score_map, geo_map, training_mask = outs        # 产生最终降采样的score map,shape=[1,h//4,w//4]        score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)        # 产生最终降采样的gep map, shape=[9,h//4,w//4]        geo_map = np.swapaxes(geo_map, 1, 2)        geo_map = np.swapaxes(geo_map, 1, 0)        geo_map = geo_map[:, ::4, ::4].astype(np.float32)        # 产生最终降采样的training mask,shape=[1,h//4,w//4]        training_mask = training_mask[np.newaxis, ::4, ::4]        training_mask = training_mask.astype(np.float32)        data['image'] = im[0]        data['score_map'] = score_map        data['geo_map'] = geo_map        data['training_mask'] = training_mask        return data

ArchitectureBackbone

采用resnet50_vd,得到1/4、1/8、1/16以及1/32倍共计4张降采样特征图。

Neck

基于Unect decoder架构,完成自底向上的特征融合过程,从1/32特征图逐步融合到1/4的特征图,最终得到一张带有多尺度信息的1/4特征图。

def forward(self, x):    # x是存储4张从backbone获取的特征图    f = x[::-1]  # 此时特征图从小到大排列    h = f[0]  # [b,512,h/32,w/32]    g = self.g0_deconv(h)  # [b,128,h/16,w/16]    h = paddle.concat([g, f[1]], axis=1)  # [b,128+256,h/16,w/16]    h = self.h1_conv(h)  # [b,128,h/16,w/16]    g = self.g1_deconv(h)  # [b,128,h/8,w/8]    h = paddle.concat([g, f[2]], axis=1)  # [b,128+128,h/8,w/8]    h = self.h2_conv(h)  # [b,128,h/8,w/8]    g = self.g2_deconv(h)  # [b,128,h/4,w/4]    h = paddle.concat([g, f[3]], axis=1)  # [b,128+64,h/4,w/4]    h = self.h3_conv(h)  # [b,128,h/4,w/4]    g = self.g3_conv(h)  # [b,128,h/4,w/4]    return g

Head

输出分类头和回归头(quad),部分参数共享。

def forward(self, x, targets=None):    # x是融合后的1/4特征图,det_conv1和det_conv2用于进一步加强特征抽取    f_det = self.det_conv1(x)  # [b,128,h/4,w/4]    f_det = self.det_conv2(f_det)  # [b,64,h/4,w/4]    # # [b,1,h/4,w/4] 用于前、背景分类,注意kernel_size=1    f_score = self.score_conv(f_det)    f_score = F.sigmoid(f_score)  # 获取相应得分    # # [b,8,h/4,w/4],8的意义:dx1,dy1,dx2,dy2,dx3,dy3,dx4,dy4    f_geo = self.geo_conv(f_det)    # 回归的range变为:[-800,800],那么最终获取的文本框的最大边长不会超过1600    f_geo = (F.sigmoid(f_geo) - 0.5) * 2 * 800    pred = {'f_score': f_score, 'f_geo': f_geo}    return pred

Loss

分类采用dice_loss,回归采用smooth_l1_loss。

class EASTLoss(nn.Layer):    def __init__(self,                 eps=1e-6,                 **kwargs):        super(EASTLoss, self).__init__()        self.dice_loss = DiceLoss(eps=eps)    def forward(self, predicts, labels):        """        Params:            predicts: {'f_score': 前景得分图,'f_geo': 回归图}            labels: [imgs, l_score, l_geo, l_mask]        """        l_score, l_geo, l_mask = labels[1:]        f_score = predicts['f_score']        f_geo = predicts['f_geo']        # 分类loss        dice_loss = self.dice_loss(f_score, l_score, l_mask)        channels = 8        # channels+1的原因是最后一个图对应了短边的归一化系数(后面会讲),前8个代表相对偏移的label        # [[b,1,h/4,w/4], ...]共9个        l_geo_split = paddle.split(            l_geo, num_or_sections=channels + 1, axis=1)        # [[b,1,h/4,w/4], ...]共8个        f_geo_split = paddle.split(f_geo, num_or_sections=channels, axis=1)        smooth_l1 = 0        for i in range(0, channels):            geo_diff = l_geo_split[i] - f_geo_split[i]  # diff=label-pred            abs_geo_diff = paddle.abs(geo_diff)  # abs_diff            # 计算abs_diff中小于1的且有文本的部分            smooth_l1_sign = paddle.less_than(abs_geo_diff, l_score)            smooth_l1_sign = paddle.cast(smooth_l1_sign, dtype='float32')            # smoothl1 loss,大于1和小于1的两个部分对应loss相加,只不过这里<1的部分没乘0.5,问题不大            in_loss = abs_geo_diff * abs_geo_diff * smooth_l1_sign + \                (abs_geo_diff - 0.5) * (1.0 - smooth_l1_sign)            # 用短边*8做归一化            out_loss = l_geo_split[-1] / channels * in_loss * l_score            smooth_l1 += out_loss        # paddle.mean(smooth_l1)就可以了,前面都乘过了l_score,这里再乘没卵用        smooth_l1_loss = paddle.mean(smooth_l1 * l_score)        # dice_loss权重为0.01,smooth_l1_loss权重为1        dice_loss = dice_loss * 0.01        total_loss = dice_loss + smooth_l1_loss        losses = {"loss":total_loss, \                  "dice_loss":dice_loss,\                  "smooth_l1_loss":smooth_l1_loss}        return losses

Dice Loss

公式:

代码:

class DiceLoss(nn.Layer):    def __init__(self, eps=1e-6):        super(DiceLoss, self).__init__()        self.eps = eps    def forward(self, pred, gt, mask, weights=None):        # mask代表了有效文本的mask,有文本的地方是1,否则为0        assert pred.shape == gt.shape        assert pred.shape == mask.shape        if weights is not None:            assert weights.shape == mask.shape            mask = weights * mask        intersection = paddle.sum(pred * gt * mask)  # 交集        union = paddle.sum(pred * mask) + paddle.sum(gt * mask) + self.eps  # 并集        loss = 1 - 2.0 * intersection / union        assert loss <= 1        return loss

SmoothL1 Loss

公式:

InferPostProcess

class EASTPostProcess(object):    def __init__(self,                 score_thresh=0.8,                 cover_thresh=0.1,                 nms_thresh=0.2,                 **kwargs):        self.score_thresh = score_thresh        self.cover_thresh = cover_thresh        self.nms_thresh = nms_thresh            ...    def __call__(self, outs_dict, shape_list):        score_list = outs_dict['f_score']  # shape=[b,1,h//4,w//4]        geo_list = outs_dict['f_geo']  # shape=[b,8,h//4,w//4]        if isinstance(score_list, paddle.Tensor):            score_list = score_list.numpy()            geo_list = geo_list.numpy()        img_num = len(shape_list)        dt_boxes_list = []        for ino in range(img_num):            score = score_list[ino]            geo = geo_list[ino]            # 根据score、geo以及一些预设阈值和locality_nms操作拿到检测框            boxes = self.detect(                score_map=score,                geo_map=geo,                score_thresh=self.score_thresh,                cover_thresh=self.cover_thresh,                nms_thresh=self.nms_thresh)            boxes_norm = []            if len(boxes) > 0:                h, w = score.shape[1:]                src_h, src_w, ratio_h, ratio_w = shape_list[ino]                boxes = boxes[:, :8].reshape((-1, 4, 2))                # 文本框坐标根于缩放系数映射回输入图像上                boxes[:, :, 0] /= ratio_w                boxes[:, :, 1] /= ratio_h                for i_box, box in enumerate(boxes):                    # 根据宽度比高度大这一先验,将坐标调整为以“左上角”点为起始点的顺时针4点框                    box = self.sort_poly(box.astype(np.int32))                    # 边长小于5的再进行一次过滤,拿到最终的检测结果                    if np.linalg.norm(box[0] - box[1]) < 5 \                        or np.linalg.norm(box[3] - box[0])  score_thresh)        if len(xy_text) == 0:            return []        # 按y轴从小到大的顺序对这些点进行排序        xy_text = xy_text[np.argsort(xy_text[:, 0])]        # 恢复成基于原图的文本框坐标        text_box_restored = self.restore_rectangle_quad(            xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])        # shape=[n,9] 前8个通道代表x1,y1,x2,y2的坐标,最后一个通道代表每个框的得分        boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)        boxes[:, :8] = text_box_restored.reshape((-1, 8))        boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]        try:            import lanms            boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)        except:            print(                'you should install lanms by pip3 install lanms-nova to speed up nms_locality'            )            # locality nms,比传统nms要快,因为进入nms中的文本框的数量要比之前少很多。前面按y轴排序其实是在为该步骤做铺垫            boxes = nms_locality(boxes.astype(np.float64), nms_thresh)        if boxes.shape[0] == 0:            return []        # 最终还会根据框预测出的文本框内的像素在score_map上的得分再做一次过滤,感觉有一些不合理,因为score_map        # 上预测的是shrink_mask,会导致框内有很多背景像素,拉低平均得分,可能会让一些原本有效的文本框变得无效        # 当然这里的cover_thresh取的比较低,可能影响就比较小        for i, box in enumerate(boxes):            mask = np.zeros_like(score_map, dtype=np.uint8)            cv2.fillPoly(mask, box[:8].reshape(                (-1, 4, 2)).astype(np.int32) // 4, 1)            boxes[i, 8] = cv2.mean(score_map, mask)[0]        boxes = boxes[boxes[:, 8] > cover_thresh]        return boxes       def nms_locality(polys, thres=0.3):    def weighted_merge(g, p):        """        框间merge的逻辑:坐标变为coor1*score1+coor2*score2,得分变为score1+score2        """        g[:8] = (g[8] * g[:8] + p[8] * p[:8]) / (g[8] + p[8])        g[8] = (g[8] + p[8])        return g        S = []    p = None    for g in polys:        # 由于是按y轴排了序,所以循环遍历就可以了        if p is not None and intersection(g, p) > thres:            # 交集大于阈值那么就merge            p = weighted_merge(g, p)        else:            # 不能再merge的时候该框临近区域已无其他框,那么其加入进S            if p is not None:                S.append(p)            p = g    if p is not None:        S.append(p)    if len(S) == 0:        return np.array([])    # 将S保留下的文本框进行标准nms,略    return standard_nms(np.array(S), thres)