【数据结构】复习题(一)

一、选择题
1.组成数据的基本单位是()。
A. 数据项 B.数据类型 C.数据元素 D.数据变量

2.设数据结构A={D,R},其中D={1,2,3,4},R={r},r={,,,},则数据结构A是()。
A.线性结构 B.树型结构 C.图型结构 D.集合

3.数组的逻辑结构不同于下列()的逻辑结构。
A.线性表 B.栈 C.队列 D.树

4.二叉树第i(i≥1)层上的结点最多有()个。
A.2i B. 2i 2^i2i C. 2 i−1 2^{i-1} 2i1 D.2i-1

5.设指针变量p指向单链表结点A,则删除结点A的后继结点B所需的操作为()。
A.p->next=p->next->next
B.p=p->next
C.p=p->next->next
D.p->next=p

6.设栈S和队列Q的初始状态为空,元素E1,E2,E3,E4,E5,E6依次通过栈S,一个元素出栈后即进入队列Q,若6个元素的出列顺序为E2、E4、E3、E6、E5和E1,则栈S的容量至少应该是()。
A.6 B.4 C.3 D.2
见图解:
图片[1] - 【数据结构】复习题(一) - MaxSSL

根据队列的性质,先进先出,所以进入队列Q的顺序也是E2、E4、E3、E6、E5、E1
同时这也是出栈S的顺序。
A.6 B.4 C.3 D.2
由此可知,栈S的容量至少为3.

7.将10阶对称矩阵压缩存储到一维数组中,则数组A的长度最少为()。
A.100 B.40 C.55 D.80
10阶矩阵共有100个元素,其对角线元素共有10个,对角线以上或者一下的元素共有(100-10)/2=45个,加上对角线的元素个数,即数组A的长度最少为55个。

8.设结点A有3个兄弟结点且结点B为结点A的双亲结点,则结点B的度数为()。
A.3 B.4 C.5 D.1

9.根据二叉树的定义可知,二叉树共有()种不同的形态。
A.4 B. 5 C.6 D.7
图片[2] - 【数据结构】复习题(一) - MaxSSL

10.假设有一下四种排序方法,则()的空间复杂度最大。
A.冒泡排序 B.快速排序 C.堆排序 D.希尔排序
冒泡排序、堆排序、希尔排序的空间复杂度都是O(1)。快速排序算法中有递归,递归的深度,为O(logn),即快速排序所需要的辅助空间为O(logn)。

二、填空题
1.设顺序循环队列Q[0:m-1]的队头指针和队尾指针分别为F和R,其中队头指针F指向队头元素的前一个位置,队尾指针指向当前队尾元素所在的位置,则出队列的语句是F=(F+1)%m
图片[3] - 【数据结构】复习题(一) - MaxSSL

2.设线性表中有n个数据元素,则在顺序存储结构上实现顺序查找的平均时间复杂度为_____,在链式存储结构上实现顺序查找的平均时间复杂度为______。
在顺序存储结构上实现顺序查找,最好情况是,比较1次,最坏情况是比较n次,平均比较次数为(n+1)/2,所以平均时间复杂度为O(n)
在链式存储结构上实现顺序查找,最好情况是,比较1次,最坏情况是比较n次,平均比较次数为 (n+1)/2,则平均时间复杂度为O(n)

3.设一颗二叉树有n个结点,则当用二叉链表作为其存储结构时,该二叉树中共有____个指针域,____个空指针域。
二叉树的链式存储方式下,每个结点包含3个域,分别是属性值data域,两个指针域lchild和rchild。
图片[4] - 【数据结构】复习题(一) - MaxSSL

显然,该二叉树中共有2n个指针域。
空指针域=度为1的结点数+2×叶子结点树。
即空指针域 = n 1+2 n 0=n_1+2n_0 n1+2n0
首先 n = n1+ n2+ n0 n=n_1+n_2+n_0n=n1+n2+n0
n = n1+ 2 n2+ 1n=n_1+2n_2+1n=n1+2n2+1
联立上面两个式子得到, n 1+2 n 0=n+1n_1+2n_0=n+1 n1+2n0=n+1

4.指针变量p指向单链表中结点A,指针变量s指向被插入的结点B,则在结点A的后面插入结点B的操作序列为____。
s->next=p->next;
p->next=s;
图片[5] - 【数据结构】复习题(一) - MaxSSL

6.设无向图G中有n个顶点和e条边,则其对应的邻接表中有_____个表头结点和___个表结点。
无论是有向图还是无向图,图中有几个顶点,就对应邻接表有几个表头结点。所以对应的邻接表有n个表头结点。
对于表结点,一般是对应图中的顶点与顶点之间的关系,对于有向图,表头结点的个数是图中的边数,对于无向图,需要×2。
故,n ,2e
6.设无向图G中有n个顶点e条边,所有顶点的度数之和为m,则e和m有___关系。
这道题,同上面的题思路一样,可以得知m=2e

7.设一颗二叉树的前序遍历和中序遍历序列均为ABC,则该二叉树的后序遍历序列为______。
首先根据二叉树的前序和中序遍历,可以画出这颗二叉树,从而写出后序遍历。
图片[6] - 【数据结构】复习题(一) - MaxSSL

8.设一颗完全二叉树中有21个结点,如果按照从上到下,从左到右的顺序从1开始顺序编号,则编号为8的双亲结点的编号为_____,编号为8的左孩子结点的编号为____。

因为题目说编号为8,还行,不是很大,所以直接无脑画出来,然后就知道了。
4,16.

9.下列程序段的功能实现子串t在主串s中位置的算法,要求在下划线处填上正确语句。

int index(char s[],char t[])//函数参数主串s和子串tint i=j=0;while(i<strlen(s) && j<strlen(t) ){if (s[i]=t[j]){i=i+1;//主串指针移动j=j+1;//子串指针移动}else//填空 //继续循环匹配 i=i-j+1;//主串从原来开始匹配的那个元素的下一个元素继续 j=0;//子串仍然从第一个位置开始比较}if (j==strlen(t)) //t的值只能为0-t 当j=t时说明匹配成功{return (i-strlen(t));//返回位置}else return -1;}

10.设一个连通图G中有呢个顶点e条边,则其最小生成树上有____条边。
生成树的定义是一个包含连通图中所有顶点的树,并且只包含连通图中的边。
因为一个连通图中的生成树只需要包含所有结点,所以生成树的边数比顶点少1。即当一个连通图具有n个顶点时,它的生成树将有n-1条边。

三、应用题
1.设一颗完全二叉树的顺序存储结构中存储数据ABCDE,要求给出该二叉树的链式存储结构,并给出该二叉树的前序、中序和后序遍历序列。
图片[7] - 【数据结构】复习题(一) - MaxSSL

2.设给定一个权值集合 W={3,5,7,9},要求根据跟定的权值集合构造一颗哈夫曼树,并计算哈夫曼树的带权路径WPL。
图片[8] - 【数据结构】复习题(一) - MaxSSL

3.设一组初始记录关键字序列为(19,21,16,5,18,23),要求给出以19为基准的一趟快速排序结果以及第2趟直接排序后的结果。

【快速排序】的基本步骤:
先将第一个记录(设排序码为x)缓存,这样就空出了一个位置,改位置应该存放排序码不大于x的记录,将它放在第一个位置,这样,后面又空出一个位置,它应该放排序码大于x的记录,反过来又从第二个记录开始向右找一个排序码大于x的记录,将它放在后面空出的位置,重复这种两边向中间逼近的过程,可以将所有排序码不大于x的记录放在前面,而所有排序码大于x的记录放在后面,最后当两边逼近于同一位置时,便将暂存的x放于该位置,即达到了划分的目的。
【直接选择排序】
直接选择排序是一种简单的排序方法,首先从所有n个待排记录中选择排序码最小的记录,将该记录与第一个记录交换,再从剩下的n-1个记录中选出排序码最小的记录与第二个记录交换。重复这样的操作直到剩下两个记录时,再从中选取排序码最小的记录和第in-1个记录交换。剩下的那一个记录肯定是排序码最大的记录,这样排序即完成。

图片[9] - 【数据结构】复习题(一) - MaxSSL
图片[10] - 【数据结构】复习题(一) - MaxSSL

4.设置=一组初始记录关键字集合为(25,10,8,27,32,68),散列表的长度为8,散列函数为H(k)=k mod 7,要求分别用线性探测和链地址法作为解决冲突的方法设计哈希表。
先求出每个关键词所对应的函数值。
图片[11] - 【数据结构】复习题(一) - MaxSSL
用线性探测法解决:
图片[12] - 【数据结构】复习题(一) - MaxSSL
(这里我第一遍做错了,原因是,线性表的长度为8)

用链地址法解决:
图片[13] - 【数据结构】复习题(一) - MaxSSL

5.设无向图G,给出该图的深度优先和广度优先遍历的序列,并给出该图的最小生成树。
图片[14] - 【数据结构】复习题(一) - MaxSSL
这里的深度优先和广度优先遍历答案不唯一。
给出其中的一种:
深度优先遍历:
125364
广度优先遍历:
123456
分别用Kruskal算法和Prim算法来生成最小生成树。
图片[15] - 【数据结构】复习题(一) - MaxSSL
图片[16] - 【数据结构】复习题(一) - MaxSSL

四、
1.设计算法判断单链表中结点是否关于中心对称算法。
思路:我们可以利用栈结构来解这道题。
关于链表对称,一是可以认为找到单链表的中心点,单链表左边和链表右边关于中心点对称。
二是可以认为,将单链表倒置,和原来的一样。
关于算法的设计,采用二思路可以更简洁地完成。

首先,创建栈机构。

typedef struct{int s[100];int top;}sqstack;

然后创建函数。

int 1Klistsymmetry(1klist *head){//创建栈并初始化栈结构sqstack stack;stack.top=-1;1klist *p;//元素入栈for (p=head;p!=0;p=p->next){stack.top++;stack.s[stack.top]=p->data;}//匹配for (p=head;p!=0;p=p->next){//如果相等 出栈if (p->data==stack.s[stack.top])stack.top=stack.top--;else//不相等直接返回return 0;}return 1;}

2.设计在链式存储结构上建立一颗二叉树的算法。

利用递归的思想来建立二叉树。
定义结点。

typedef char datatype;typedef struct node{datatype data;struct *lchild;struct *rchild;}bitree;
void createbitree (bitree t){char ch;scanf("%c",&ch);if(ch=='#'){t=NULL;return;}else{t=(bitree*)malloc(sizeof(bitree));t->data=ch;//创建左子树createbitree(t->lchild);//创建右子树createbitree(t->rchild);}}
© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享