人脸任务在计算机视觉领域中十分重要,本项目主要使用了两类技术:人脸检测+人脸识别

代码分为两部分内容:人脸注册人脸识别

  • 人脸注册:将人脸特征存储进数据库,这里用feature.csv代替
  • 人脸识别:将人脸特征与CSV文件中人脸特征进行比较,如果成功匹配则写入考勤文件attendance.csv

文章前半部分为一步步实现流程介绍,最后会有整理过后的完整项目代码。

一、项目实现

A. 注册:

导入相关包

import cv2import numpy as npimport dlibimport timeimport csv# from argparse import ArgumentParserfrom PIL import Image, ImageDraw, ImageFont

设计注册功能

注册过程我们需要完成的事:

  • 打开摄像头获取画面图片
  • 在图片中检测并获取人脸位置
  • 根据人脸位置获取68个关键点
  • 根据68个关键点生成特征描述符
  • 保存
  • (优化)展示界面,加入注册时成功提示等

1、基本步骤

我们首先进行前三步

# 检测人脸,获取68个关键点,获取特征描述符def faceRegister(faceId=1, userName='default', interval=3, faceCount=3, resize_w=700, resize_h=400):    '''    faceId:人脸ID    userName: 人脸姓名    faceCount: 采集该人脸图片的数量    interval: 采集间隔    '''    cap = cv2.VideoCapture(0)    # 人脸检测模型    hog_face_detector = dlib.get_frontal_face_detector()    # 关键点 检测模型    shape_detector = dlib.shape_predictor('./weights/shape_predictor_68_face_landmarks.dat')    # resnet模型    face_descriptor_extractor = dlib.face_recognition_model_v1('./weights/dlib_face_recognition_resnet_model_v1.dat')        while True:        ret, frame = cap.read()        # 镜像        frame = cv2.flip(frame,1)        # 转为灰度图        frame_gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)                # 检测人脸        detections = hog_face_detector(frame,1)        for face in detections:            # 人脸框坐标 左上和右下            l, t, r, b = face.left(), face.top(), face.right(), face.bottom()            # 获取68个关键点            points = shape_detector(frame,face)                        # 绘制关键点            for point in points.parts():                cv2.circle(frame,(point.x,point.y),2,(0,255,0),1)            # 绘制矩形框            cv2.rectangle(frame,(l,t),(r,b),(0,255,0),2)                           cv2.imshow("face",frame)        if cv2.waitKey(10) & 0xFF == ord('q'):            break                     cap.release()    cv2.destroyAllWindows                                faceRegister()      

此时一张帅脸如下:

2、描述符的采集

之后,我们根据参数,即faceCount 和 Interval 进行描述符的生成和采集

(这里我默认是faceCount=3,Interval=3,即每3秒采集一次,共3次)

def faceRegister(faceId=1, userName='default', interval=3, faceCount=3, resize_w=700, resize_h=400):    '''    faceId:人脸ID    userName: 人脸姓名    faceCount: 采集该人脸图片的数量    interval: 采集间隔    '''    cap = cv2.VideoCapture(0)    # 人脸检测模型    hog_face_detector = dlib.get_frontal_face_detector()    # 关键点 检测模型    shape_detector = dlib.shape_predictor('./weights/shape_predictor_68_face_landmarks.dat')    # resnet模型    face_descriptor_extractor = dlib.face_recognition_model_v1('./weights/dlib_face_recognition_resnet_model_v1.dat')            # 开始时间    start_time = time.time()    # 执行次数    collect_times = 0        while True:        ret, frame = cap.read()                # 镜像        frame = cv2.flip(frame,1)        # 转为灰度图        frame_gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)                # 检测人脸        detections = hog_face_detector(frame,1)        for face in detections:            # 人脸框坐标 左上和右下            l, t, r, b = face.left(), face.top(), face.right(), face.bottom()            # 获取68个关键点            points = shape_detector(frame,face)            # 绘制人脸关键点            for point in points.parts():                cv2.circle(frame, (point.x, point.y), 2, (0, 255, 0), 1)            # 绘制矩形框            cv2.rectangle(frame, (l, t), (r, b), (0, 255, 0), 2)                        # 采集:            if collect_times  interval:                    # 获取特征描述符                    face_descriptor = face_descriptor_extractor.compute_face_descriptor(frame,points)                    # dlib格式转为数组                    face_descriptor = [f for f in face_descriptor]                    collect_times += 1                    start_time = now                    print("成功采集{}次".format(collect_times))                else:                    # 时间间隔不到interval                    print("等待进行下一次采集")                    pass            else:                # 已经成功采集完3次了                print("采集完毕")                cap.release()                cv2.destroyAllWindows()                return                      cv2.imshow("face",frame)        if cv2.waitKey(10) & 0xFF == ord('q'):            break                      cap.release()    cv2.destroyAllWindows()                                faceRegister()  
等待进行下一次采集...成功采集1次等待进行下一次采集...成功采集2次等待进行下一次采集...成功采集3次采集完毕

3、完整的注册

最后就是写入csv文件

这里加入了注册成功等的提示,且把一些变量放到了全局,因为后面人脸识别打卡时也会用到。

# 加载人脸检测器hog_face_detector = dlib.get_frontal_face_detector()cnn_detector = dlib.cnn_face_detection_model_v1('./weights/mmod_human_face_detector.dat')haar_face_detector = cv2.CascadeClassifier('./weights/haarcascade_frontalface_default.xml')# 加载关键点检测器points_detector = dlib.shape_predictor('./weights/shape_predictor_68_face_landmarks.dat')# 加载resnet模型face_descriptor_extractor = dlib.face_recognition_model_v1('./weights/dlib_face_recognition_resnet_model_v1.dat')
# 绘制中文def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):    if (isinstance(img, np.ndarray)):  # 判断是否OpenCV图片类型        img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))    # 创建一个可以在给定图像上绘图的对象    draw = ImageDraw.Draw(img)    # 字体的格式    fontStyle = ImageFont.truetype(        "./fonts/songti.ttc", textSize, encoding="utf-8")    # 绘制文本    draw.text(position, text, textColor, font=fontStyle)    # 转换回OpenCV格式    return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
# 绘制左侧信息def drawLeftInfo(frame, fpsText, mode="Reg", detector='haar', person=1, count=1):    # 帧率    cv2.putText(frame, "FPS:  " + str(round(fpsText, 2)), (30, 50), cv2.FONT_ITALIC, 0.8, (0, 255, 0), 2)    # 模式:注册、识别    cv2.putText(frame, "Mode:  " + str(mode), (30, 80), cv2.FONT_ITALIC, 0.8, (0, 255, 0), 2)    if mode == 'Recog':        # 检测器        cv2.putText(frame, "Detector:  " + detector, (30, 110), cv2.FONT_ITALIC, 0.8, (0, 255, 0), 2)        # 人数        cv2.putText(frame, "Person:  " + str(person), (30, 140), cv2.FONT_ITALIC, 0.8, (0, 255, 0), 2)        # 总人数        cv2.putText(frame, "Count:  " + str(count), (30, 170), cv2.FONT_ITALIC, 0.8, (0, 255, 0), 2)
# 注册人脸def faceRegiser(faceId=1, userName='default', interval=3, faceCount=3, resize_w=700, resize_h=400):    # 计数    count = 0    # 开始注册时间    startTime = time.time()    # 视频时间    frameTime = startTime    # 控制显示打卡成功的时长    show_time = (startTime - 10)    # 打开文件    f = open('./data/feature.csv', 'a', newline='')    csv_writer = csv.writer(f)    cap = cv2.VideoCapture(0)    while True:        ret, frame = cap.read()        frame = cv2.resize(frame, (resize_w, resize_h))        frame = cv2.flip(frame, 1)        # 检测        face_detetion = hog_face_detector(frame, 1)        for face in face_detetion:            # 识别68个关键点            points = points_detector(frame, face)            # 绘制人脸关键点            for point in points.parts():                cv2.circle(frame, (point.x, point.y), 2, (0, 255, 0), 1)            # 绘制框框            l, t, r, b = face.left(), face.top(), face.right(), face.bottom()            cv2.rectangle(frame, (l, t), (r, b), (0, 255, 0), 2)            now = time.time()            if (now - show_time) < 0.5:                frame = cv2AddChineseText(frame,                                          "注册成功 {count}/{faceCount}".format(count=(count + 1), faceCount=faceCount),                                          (l, b + 30), textColor=(255, 0, 255), textSize=30)            # 检查次数            if count  interval:                    # 特征描述符                    face_descriptor = face_descriptor_extractor.compute_face_descriptor(frame, points)                    face_descriptor = [f for f in face_descriptor]                    # 描述符增加进data文件                    line = [faceId, userName, face_descriptor]                    # 写入                    csv_writer.writerow(line)                    # 保存照片样本                    print('人脸注册成功 {count}/{faceCount},faceId:{faceId},userName:{userName}'.format(count=(count + 1),                                                                                                  faceCount=faceCount,                                                                                                  faceId=faceId,                                                                                                  userName=userName))                    frame = cv2AddChineseText(frame,                                              "注册成功 {count}/{faceCount}".format(count=(count + 1), faceCount=faceCount),                                              (l, b + 30), textColor=(255, 0, 255), textSize=30)                    show_time = time.time()                    # 时间重置                    startTime = now                    # 次数加一                    count += 1            else:                print('人脸注册完毕')                f.close()                cap.release()                cv2.destroyAllWindows()                return        now = time.time()        fpsText = 1 / (now - frameTime)        frameTime = now        # 绘制        drawLeftInfo(frame, fpsText, 'Register')        cv2.imshow('Face Attendance Demo: Register', frame)        if cv2.waitKey(10) & 0xFF == ord('q'):            break    f.close()    cap.release()    cv2.destroyAllWindows()

此时执行:

faceRegiser(3,"用户B")

人脸注册成功 1/3,faceId:3,userName:用户B人脸注册成功 2/3,faceId:3,userName:用户B人脸注册成功 3/3,faceId:3,userName:用户B人脸注册完毕

其features文件:

B. 识别、打卡

识别步骤如下:

  • 打开摄像头获取画面
  • 根据画面中的图片获取里面的人脸特征描述符
  • 根据特征描述符将其与feature.csv文件里特征做距离判断
  • 获取ID、NAME
  • 考勤记录写入attendance.csv里

这里与上面流程相似,不过是加了一个对比功能,距离小于阈值,则表示匹配成功。就加快速度不一步步来了,代码如下:

# 刷新右侧考勤信息def updateRightInfo(frame, face_info_list, face_img_list):    # 重新绘制逻辑:从列表中每隔3个取一批显示,新增人脸放在最前面    # 如果有更新,重新绘制    # 如果没有,定时往后移动    left_x = 30    left_y = 20    resize_w = 80    offset_y = 120    index = 0    frame_h = frame.shape[0]    frame_w = frame.shape[1]    for face in face_info_list[:3]:        name = face[0]        time = face[1]        face_img = face_img_list[index]        # print(face_img.shape)        face_img = cv2.resize(face_img, (resize_w, resize_w))        offset_y_value = offset_y * index        frame[(left_y + offset_y_value):(left_y + resize_w + offset_y_value), -(left_x + resize_w):-left_x] = face_img        cv2.putText(frame, name, ((frame_w - (left_x + resize_w)), (left_y + resize_w) + 15 + offset_y_value),                    cv2.FONT_ITALIC, 0.5, (0, 255, 0), 1)        cv2.putText(frame, time, ((frame_w - (left_x + resize_w)), (left_y + resize_w) + 30 + offset_y_value),                    cv2.FONT_ITALIC, 0.5, (0, 255, 0), 1)        index += 1    return frame
# 返回DLIB格式的facedef getDlibRect(detector='hog', face=None):    l, t, r, b = None, None, None, None    if detector == 'hog':        l, t, r, b = face.left(), face.top(), face.right(), face.bottom()    if detector == 'cnn':        l = face.rect.left()        t = face.rect.top()        r = face.rect.right()        b = face.rect.bottom()    if detector == 'haar':        l = face[0]        t = face[1]        r = face[0] + face[2]        b = face[1] + face[3]    nonnegative = lambda x: x if x >= 0 else 0    return map(nonnegative, (l, t, r, b))
# 获取CSV中信息def getFeatList():    print('加载注册的人脸特征')    feature_list = None    label_list = []    name_list = []    # 加载保存的特征样本    with open('./data/feature.csv', 'r') as f:        csv_reader = csv.reader(f)        for line in csv_reader:            # 重新加载数据            faceId = line[0]            userName = line[1]            face_descriptor = eval(line[2])            label_list.append(faceId)            name_list.append(userName)            # 转为numpy格式            face_descriptor = np.asarray(face_descriptor, dtype=np.float64)            # 转为二维矩阵,拼接            face_descriptor = np.reshape(face_descriptor, (1, -1))            # 初始化            if feature_list is None:                feature_list = face_descriptor            else:                # 拼接                feature_list = np.concatenate((feature_list, face_descriptor), axis=0)    print("特征加载完毕")    return feature_list, label_list, name_list
# 人脸识别def faceRecognize(detector='haar', threshold=0.5, write_video=False, resize_w=700, resize_h=400):    # 视频时间    frameTime = time.time()    # 加载特征    feature_list, label_list, name_list = getFeatList()    face_time_dict = {}    # 保存name,time人脸信息    face_info_list = []    # numpy格式人脸图像数据    face_img_list = []    # 侦测人数    person_detect = 0    # 统计人脸数    face_count = 0    # 控制显示打卡成功的时长    show_time = (frameTime - 10)    # 考勤记录    f = open('./data/attendance.csv', 'a')    csv_writer = csv.writer(f)    cap = cv2.VideoCapture(0)    # resize_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))//2    # resize_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) //2    videoWriter = cv2.VideoWriter('./record_video/out' + str(time.time()) + '.mp4', cv2.VideoWriter_fourcc(*'MP4V'), 15,                                  (resize_w, resize_h))    while True:        ret, frame = cap.read()        frame = cv2.resize(frame, (resize_w, resize_h))        frame = cv2.flip(frame, 1)        # 切换人脸检测器        if detector == 'hog':            face_detetion = hog_face_detector(frame, 1)        if detector == 'cnn':            face_detetion = cnn_detector(frame, 1)        if detector == 'haar':            frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)            face_detetion = haar_face_detector.detectMultiScale(frame_gray, minNeighbors=7, minSize=(100, 100))        person_detect = len(face_detetion)        for face in face_detetion:            l, t, r, b = getDlibRect(detector, face)            face = dlib.rectangle(l, t, r, b)            # 识别68个关键点            points = points_detector(frame, face)            cv2.rectangle(frame, (l, t), (r, b), (0, 255, 0), 2)            # 人脸区域            face_crop = frame[t:b, l:r]            # 特征            face_descriptor = face_descriptor_extractor.compute_face_descriptor(frame, points)            face_descriptor = [f for f in face_descriptor]            face_descriptor = np.asarray(face_descriptor, dtype=np.float64)            # 计算距离            distance = np.linalg.norm((face_descriptor - feature_list), axis=1)            # 最小距离索引            min_index = np.argmin(distance)            # 最小距离            min_distance = distance[min_index]            predict_name = "Not recog"            if min_distance 3秒,或者换了一个人,将这条记录插入                need_insert = False                now = time.time()                if predict_name in face_time_dict:                    if (now - face_time_dict[predict_name]) > 3:                        # 刷新时间                        face_time_dict[predict_name] = now                        need_insert = True                    else:                        # 还是上次人脸                        need_insert = False                else:                    # 新增数据记录                    face_time_dict[predict_name] = now                    need_insert = True                if (now - show_time)  10:            face_info_list = face_info_list[:9]            face_img_list = face_img_list[:9]        frame = updateRightInfo(frame, face_info_list, face_img_list)        if write_video:            videoWriter.write(frame)        cv2.imshow('Face Attendance Demo: Recognition', frame)        if cv2.waitKey(10) & 0xFF == ord('q'):            break    f.close()    videoWriter.release()    cap.release()    cv2.destroyAllWindows()

然后效果就和我们宿舍楼下差不多了~

我年轻的时候,我大概比现在帅个几百倍吧,哎。

二、总代码

上文其实把登录和注册最后一部分代码放在一起就是了,这里就不再复制粘贴了,相关权重文件下载链接:opencv/data at master · opencv/opencv · GitHub

懒得下载或者懒得找也可以私信我发你,看见或有时间回。

当然本项目还有很多需要优化的地方,比如设置用户不能重复、考勤打卡每天只能一次、把csv改为链接成数据库等等,后续代码优化完成后就可以部署然后和室友**了。