目录

  • 一、目的
  • 二、环境
  • 三、相关概念
    • 3.1 输入设备
    • 3.2 UEVENT机制
    • 3.3 JNI
    • 3.4 EPOLL机制
    • 3.5 INotify
  • 四、详细设计
    • 4.1 结构图
    • 4.2 代码结构
    • 4.3 InputManagerService模块
      • 4.3.1 IMS服务入口
      • 4.3.2 IMS初始化
      • 4.3.3 IMS启动
      • 4.3.4 IMS消息监听
    • 4.4 NativeInputManager模块
      • 4.4.1 nativeInit初始化
      • 4.4.2 nativeStart启动
    • 4.5 Inputflinger模块
      • 4.5.1 启动事件管理服务
    • 4.6 Inputreader模块
      • 4.6.1 启动InputReader线程
      • 4.6.2 EventHub获取事件队列
      • 4.6.3 Input事件加工
      • 4.6.4 事件发布
    • 4.7 Inputdispatcher模块
      • 4.7.1 Input事件上报
      • 4.7.2 启动InputDispatcher线程
    • 4.8 WindowManagerService模块
      • 4.8.1 ViewRootImpl阶段
      • 4.8.2 WindowManagerService.addWindow()
      • 4.8.3 WindowInputEventReceiver
  • 五、Input设备节点介绍
    • 5.1 常见触摸事件类型
    • 5.2 getevent
    • 5.3 sendevent
  • 六、参考资料

一、目的

最近接触到了一个问题:耳机插入事件的由来,走读了下IMS输入系统服务的源码。同时,IMS输入系统服务在Android的开发过程中,也经常出现,有必要了解下相关原理。

  1. 学习下IMS输入系统的源码设计,了解该模块承担的业务职责,熟悉Android结构
  2. 了解Android屏幕点击事件、物理按键事件的分发规则

二、环境

  1. 版本:Android 11
  2. 平台:高通 QCM2290

三、相关概念3.1 输入设备

常见的输入设备有鼠标、键盘、触摸屏等,用户通过输入设备与系统进行交互。

3.2 UEVENT机制

“uevent” 是 Linux 系统中的一种事件通知机制,用于向用户空间发送有关内核和设备状态变化的通知。这种机制通常用于设备驱动程序、热插拔事件以及设备状态变化等场景,以便用户空间应用程序能够在这些事件发生时做出相应的响应。

3.3 JNI

JNI,全称Java Native Interface,是Java编程语言的一种编程框架,用于实现Java代码与其他编程语言(如C、C++)进行交互的接口。JNI允许Java程序调用原生代码(native code),即由其他编程语言编写的代码,并且允许原生代码调用Java代码。通过JNI,Java程序可以访问底层系统功能、使用硬件设备、调用第三方库等。

3.4 EPOLL机制

监听多个描述符的可读/可写状态。等待返回时携带了可读的描述符

3.5 INotify

Linux 内核所提供的一种文件系统变化通知机制。可以监控文件系统的变化,如文件新建、删除、读写等

四、详细设计

通过屏幕的触摸事件,来分析IMS系统,相关如下

4.1 结构图4.2 代码结构

层级模块描述源码编译产物
FrameworkInputManagerServicexxxframeworks/base/services/core/java/out/target/product/qssi/system/framework/services.jar
NativeNativeInputManagerxxxframeworks/base/services/core/jni/out/target/product/qssi/system/lib64/libandroid_servers.so
NativeInputflingerxxxframeworks/native/services/inputflinger/out/target/product/qssi/system/lib64/libinputflinger.so
NativeInputreaderxxxframeworks/native/services/inputflinger/readerout/target/product/qssi/system/lib64/libinputreader.so
NativeInputdispatcherxxxframeworks/native/services/inputflinger/dispatcher/(静态库)out/soong/.intermediates/frameworks/native/services/inputflinger/dispatcher/libinputdispatcher/android_arm64_armv8-a_static/libinputdispatcher.a
NativeNativeInputEventReceiverxxxframeworks/base/core/jni/out/target/product/qssi/system/lib64/libandroid_runtime
NativeInputChannelxxxframeworks/native/libs/input/out/target/product/qssi/system/lib64/libinput.so

4.3 InputManagerService模块

InputManagerService是Android框架层一个非核心服务,主要是提供一个IMS输入系统启动的入口,同时对应用层提供业务相关接口。

4.3.1 IMS服务入口

Android设备开机后,会启动system_server进程,InputManagerService服务(以下简称IMS)在该进程被唤起。

@frameworks\base\services\java\com\android\server\SystemServer.javaprivate void startOtherServices(@NonNull TimingsTraceAndSlog t) {    ...    t.traceBegin("StartInputManagerService");    inputManager = new InputManagerService(context);//新建IMS实例    t.traceEnd();    ...    t.traceBegin("StartInputManager");    inputManager.setWindowManagerCallbacks(wm.getInputManagerCallback());//设置窗体事件监听    inputManager.start();//启动IMS服务    t.traceEnd();    ...}

4.3.2 IMS初始化

此处做一些IMS相关的初始化操作,会调用nativeInit方法,获取一个NativeInputManager对象,类似于一个句柄。

@frameworks\base\services\core\java\com\android\server\input\InputManagerService.javaprivate static native long nativeInit(InputManagerService service,        Context context, MessageQueue messageQueue);public InputManagerService(Context context) {    ...    mStaticAssociations = loadStaticInputPortAssociations();    mUseDevInputEventForAudioJack =            context.getResources().getBoolean(R.bool.config_useDevInputEventForAudioJack);    Slog.i(TAG, "Initializing input manager, mUseDevInputEventForAudioJack="            + mUseDevInputEventForAudioJack);    mPtr = nativeInit(this, mContext, mHandler.getLooper().getQueue());    ...}

4.3.3 IMS启动

InputManagerService通过start方法启动,会调用nativeStart方法,该方法为Native方法

@frameworks\base\services\core\java\com\android\server\input\InputManagerService.javaprivate static native void nativeStart(long ptr);public void start() {    Slog.i(TAG, "Starting input manager");    nativeStart(mPtr);    // Add ourself to the Watchdog monitors.    Watchdog.getInstance().addMonitor(this);    ...}

4.3.4 IMS消息监听

该方法为Native的回调方法,用于上报IMS事件,如耳机插入事件等。

@frameworks\base\services\core\java\com\android\server\input\InputManagerService.java// Native callback.private void notifySwitch(long whenNanos, int switchValues, int switchMask) {    ...    if ((switchMask & SW_LID_BIT) != 0) {        final boolean lidOpen = ((switchValues & SW_LID_BIT) == 0);        mWindowManagerCallbacks.notifyLidSwitchChanged(whenNanos, lidOpen);    }    if ((switchMask & SW_CAMERA_LENS_COVER_BIT) != 0) {        final boolean lensCovered = ((switchValues & SW_CAMERA_LENS_COVER_BIT) != 0);        mWindowManagerCallbacks.notifyCameraLensCoverSwitchChanged(whenNanos, lensCovered);    }    if (mUseDevInputEventForAudioJack && (switchMask & SW_JACK_BITS) != 0) {        mWiredAccessoryCallbacks.notifyWiredAccessoryChanged(whenNanos, switchValues,                    switchMask);    }    ...}

4.4 NativeInputManager模块

该模块为JNI模块,主要处理Java方法与c++方法映射关系,即IMS服务与InputFlinger模块的通信桥梁。

4.4.1 nativeInit初始化

(1)新建一个NativeInputManager对象,并将该对象返回给java层

@\frameworks\base\services\core\jni\com_android_server_input_InputManagerService.cppstatic jlong nativeInit(JNIEnv* env, jclass /* clazz */,        jobject serviceObj, jobject contextObj, jobject messageQueueObj) {    sp messageQueue = android_os_MessageQueue_getMessageQueue(env, messageQueueObj);    ...    NativeInputManager* im = new NativeInputManager(contextObj, serviceObj,            messageQueue->getLooper());    im->incStrong(0);    return reinterpret_cast(im);}

(2)创建InputManager管理类,主要用于管理Input事件分发、事件读取行为

@\frameworks\base\services\core\jni\com_android_server_input_InputManagerService.cppNativeInputManager::NativeInputManager(jobject contextObj,        jobject serviceObj, const sp& looper) :        mLooper(looper), mInteractive(true) {    JNIEnv* env = jniEnv();    ...    mInputManager = new InputManager(this, this);    defaultServiceManager()->addService(String16("inputflinger"),            mInputManager, false);}

4.4.2 nativeStart启动

获取上一个阶段创建NativeInputManager对象,并引用start启动该模块

@\frameworks\base\services\core\jni\com_android_server_input_InputManagerService.cppstatic void nativeStart(JNIEnv* env, jclass /* clazz */, jlong ptr) {    NativeInputManager* im = reinterpret_cast(ptr);    status_t result = im->getInputManager()->start();    if (result) {        jniThrowRuntimeException(env, "Input manager could not be started.");    }}

4.5 Inputflinger模块

input事件的管理类,数据传递类,也是输入系统native层核心的模块。
ps: 根据字典里的定义,flinger是指出轨的人。在SurfaceFlinger的例子中,它把可视数据扔给surface AudioFlinger把音频数据扔给适当的接收者。它们只是“可爱”的词… 😃

4.5.1 启动事件管理服务

启动两个核心的阻塞线程,一个是事件分发线程,一个是事件读取线程。

@frameworks\native\services\inputflinger\InputManager.cppstatus_t InputManager::start() {    status_t result = mDispatcher->start();//启动事件分发服务    if (result) {        ALOGE("Could not start InputDispatcher thread due to error %d.", result);        return result;    }    result = mReader->start();//启动事件读取服务    if (result) {        ALOGE("Could not start InputReader due to error %d.", result);        mDispatcher->stop();        return result;    }    return OK;}

4.6 Inputreader模块

事件读取服务,读取驱动上报事件

4.6.1 启动InputReader线程

(1)创建一个InputThread线程

@frameworks\native\services\inputflinger\reader\InputReader.cppstatus_t InputReader::start() {    if (mThread) {        return ALREADY_EXISTS;    }    mThread = std::make_unique(            "InputReader", [this]() { loopOnce(); }, [this]() { mEventHub->wake(); });    return OK;}

(2)InputThread线程的loop循环队列(线程和loop的关系)

@frameworks\native\services\inputflinger\reader\InputReader.cppvoid InputReader::loopOnce() {    int32_t oldGeneration;    int32_t timeoutMillis;    bool inputDevicesChanged = false;    std::vector inputDevices;    ...    size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);//step 1. 通过EventHub抽取事件列表    { // acquire lock        ...        if (count) {            processEventsLocked(mEventBuffer, count);// step 2. 对事件进行加工处理        }        ...    } // release lock    ...    mQueuedListener->flush();//step 3. 事件发布}

4.6.2 EventHub获取事件队列

EventHub:事件集线器,它将全部的输入事件通过一个接口getEvents(),将从多个输入设备节点中读取的事件交给InputReader,是输入系统最底层的一个组件。
(1)EventHub的构造函数
它通过INotifyEpoll机制建立起了对设备节点增删事件以及可读状态的监听。同时,EventHub创建了一个名为wakeFds的匿名管道,因为InputReader在运行getEvents()时会因无事件而导致其线程堵塞在epoll_wait()的调用里,然而有时希望能够立马唤醒InputReader线程使其处理一些请求。

@frameworks\native\services\inputflinger\reader\EventHub.cppstatic const char* DEVICE_PATH = "/dev/input";EventHub::EventHub(void)      : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),        mNextDeviceId(1),        mControllerNumbers(),        mOpeningDevices(nullptr),        mClosingDevices(nullptr),        mNeedToSendFinishedDeviceScan(false),        mNeedToReopenDevices(false),        mNeedToScanDevices(true),        mPendingEventCount(0),        mPendingEventIndex(0),        mPendingINotify(false) {    ensureProcessCanBlockSuspend();    mEpollFd = epoll_create1(EPOLL_CLOEXEC);//创建一个epoll对象,用来监听设备节点是否有事件    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));    mINotifyFd = inotify_init();//创建一个inotify对象,用来监听设备节点的增删事件    mInputWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);    ...    struct epoll_event eventItem = {};    eventItem.events = EPOLLIN | EPOLLWAKEUP;    eventItem.data.fd = mINotifyFd;    int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);//将mINotifyFd注册进epoll对象中    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);    int wakeFds[2];    result = pipe(wakeFds);//创建一个匿名管道,用于唤醒EventHub,避免无事件引起阻塞    LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);    mWakeReadPipeFd = wakeFds[0];    mWakeWritePipeFd = wakeFds[1];    ...    eventItem.data.fd = mWakeReadPipeFd;    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);//将管道读取端加入epoll对象中    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",                        errno);}

mEpollFd监听如下几个事件:设备节点的增加、删除、修改;匿名管道,避免无事件阻塞

(2)RawEvent结构体
mEventBuffer用于描述原始输入事件,其类型为RawEvent,相关结构体如下:

@frameworks\native\services\inputflinger\reader\include\EventHub.h/* * A raw event as retrieved from the EventHub. */struct RawEvent {    nsecs_t when;//事件时间戳    int32_t deviceId;//产生事件的设备ID    int32_t type;//事件类型    int32_t code;//事件编码    int32_t value;//事件值};

(3)EventHub->getEvents事件,
getEvents()是事件处理的核心方法,其通过EPOLL机制和INOTIFY,从多个设备节点读取事件。

@frameworks\native\services\inputflinger\reader\EventHub.cppsize_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {    ...    for (;;) {        ...        if (mNeedToScanDevices) {//Step 1.扫描设备            mNeedToScanDevices = false;            scanDevicesLocked();            mNeedToSendFinishedDeviceScan = true;        }        ...        // Grab the next input event.        bool deviceChanged = false;        while (mPendingEventIndex fd, readBuffer, sizeof(struct input_event) * capacity);//Step 3.读取底层上报事件                if (readSize == 0 || (readSize id == mBuiltInKeyboardId ? 0 : device->id;                    size_t count = size_t(readSize) / sizeof(struct input_event);                    for (size_t i = 0; i when = processEventTimestamp(iev);                        event->deviceId = deviceId;                        event->type = iev.type;                        event->code = iev.code;                        event->value = iev.value;                        event += 1;//将event指针移动到下一个可用于填充事件的RawEvent对象                        capacity -= 1;                    }                    ...                }            }             ...        }        ...        mLock.unlock(); // release lock before poll        int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);//Step 4.阻塞,等待事件各种类型消息        mLock.lock(); // reacquire lock after poll        ...    }    // All done, return the number of events we read.    return event - buffer;}

Step 1. 扫描设备,会获取input/dev/下的所有设备,并将各个设备注册到epoll线程池里,监听各个设备的消息状态;
Step 2. 处理未被InputReader取走的输入事件与设备事件,一般情况下有事件上报时,epoll_wait会读取到mPendingEventItems值,即mPendingEventCount值,即会进入该流程;
Step 3. 读取底层上报事件,根据上报的fd设备,读取对应的设备节点。即可以获取到上报的事件内容。如下为屏幕点击对应的上报事件:

Step 4. 通过epoll机制,阻塞当前进程,等待设备节点变更,事件上报。

4.6.3 Input事件加工

主要是将底层RawEvent事件,进一步加工,将Event事件注入到mArgsQueue队列的过程。
(1)Input事件加工

@frameworks\native\services\inputflinger\reader\InputReader.cppvoid InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) {    for (const RawEvent* rawEvent = rawEvents; count;) {        int32_t type = rawEvent->type;        size_t batchSize = 1;        if (type type) {                case EventHubInterface::DEVICE_ADDED://设备增加                    addDeviceLocked(rawEvent->when, rawEvent->deviceId);                    break;                case EventHubInterface::DEVICE_REMOVED://设备移除                    removeDeviceLocked(rawEvent->when, rawEvent->deviceId);                    break;                case EventHubInterface::FINISHED_DEVICE_SCAN://设备扫描结束                    handleConfigurationChangedLocked(rawEvent->when);                    break;                default:                    ALOG_ASSERT(false); // can't happen                    break;            }        }        count -= batchSize;        rawEvent += batchSize;    }}

(2)Input事件推送
该流程业务代码比较冗长,做了层层封装,如下为方法调用栈:
InputReader.processEventsLocked() -> InputReader.processEventsForDeviceLocked() -> InputDevice.process() -> MultiTouchInputMapper.process() -> TouchInputMapper.process()->TouchInputMapper.sync() -> TouchInputMapper.processRawTouches() -> TouchInputMapper.cookAndDispatch() -> TouchInputMapper.dispatchTouches() -> TouchInputMapper.dispatchMotion() -> QueuedInputListener -> notifyMotion()
最终可以看到事件最终会传递到mArgsQueue容器内。

@frameworks\native\services\inputflinger\InputListener.cppstd::vector mArgsQueue;void QueuedInputListener::notifyMotion(const NotifyMotionArgs* args) {    traceEvent(__func__, args->id);    mArgsQueue.push_back(new NotifyMotionArgs(*args));}

4.6.4 事件发布

(1)当事件加工完成后,会引用flush()方法,将事件发布出去

@frameworks\native\services\inputflinger\InputListener.cppvoid QueuedInputListener::flush() {    size_t count = mArgsQueue.size();    for (size_t i = 0; i notify(mInnerListener);//事件发布        delete args;    }    mArgsQueue.clear();}

(2)由上一节可知,屏幕点击事件对应的args为NotifyMotionArgs

@frameworks\native\services\inputflinger\InputListener.cppvoid NotifyMotionArgs::notify(const sp& listener) const {    listener->notifyMotion(this);}

(3)大家可以自己去追溯下源码,该listener接口的实现类是InputDispatcher。至此,事件将进入下一阶段——事件分发。

@frameworks\native\services\inputflinger\dispatcher\InputDispatcher.cppvoid InputDispatcher::notifyMotion(const NotifyMotionArgs* args) {    ...}

4.7 Inputdispatcher模块

事件分发服务,将底层读到的事件,分发到上层

4.7.1 Input事件上报

至此,我们知道InputDispatch会启动一个阻塞线程,等待底层事件上报;而通过InputReader的分析,我们知道底层事件响应,最终会通知InputDispatch模块的notifyMotion()方法

@frameworks\native\services\inputflinger\dispatcher\InputDispatcher.cppvoid InputDispatcher::notifyMotion(const NotifyMotionArgs* args) {    ...    { // acquire lock        mLock.lock();        ...        // Just enqueue a new motion event.        MotionEntry* newEntry =                new MotionEntry(args->id, args->eventTime, args->deviceId, args->source,                                args->displayId, policyFlags, args->action, args->actionButton,                                args->flags, args->metaState, args->buttonState,                                args->classification, args->edgeFlags, args->xPrecision,                                args->yPrecision, args->xCursorPosition, args->yCursorPosition,                                args->downTime, args->pointerCount, args->pointerProperties,                                args->pointerCoords, 0, 0);        needWake = enqueueInboundEventLocked(newEntry);//构建新的MotionEvent事件        mLock.unlock();    } // release lock    if (needWake) {        mLooper->wake();//唤醒InputDispatch线程,进行分发    }}

4.7.2 启动InputDispatcher线程

(1)创建一个InputDispatcher线程

@frameworks\native\services\inputflinger\dispatcher\InputDispatcher.cppstatus_t InputDispatcher::start() {    if (mThread) {        return ALREADY_EXISTS;    }    mThread = std::make_unique(            "InputDispatcher", [this]() { dispatchOnce(); }, [this]() { mLooper->wake(); });    return OK;}

(2)InputThread线程的loop队列

@frameworks\native\services\inputflinger\dispatcher\InputDispatcher.cppvoid InputDispatcher::dispatchOnce() {    nsecs_t nextWakeupTime = LONG_LONG_MAX;    { // acquire lock        std::scoped_lock _l(mLock);        mDispatcherIsAlive.notify_all();        // Run a dispatch loop if there are no pending commands.        // The dispatch loop might enqueue commands to run afterwards.        if (!haveCommandsLocked()) {            dispatchOnceInnerLocked(&nextWakeupTime);//事件分发        }        ...    } // release lock    // Wait for callback or timeout or wake.  (make sure we round up, not down)    nsecs_t currentTime = now();    int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime);    mLooper->pollOnce(timeoutMillis);//堵塞,等待唤醒}

(3)事件分发过程
事件的分发过程也比较冗长,此处不具体分析过程,其业务堆栈如下,即事件分发最终会下发到publishMotionEvent。
InputDispatcher.dispatchOnceInnerLocked() -> InputDispatcher.dispatchMotionLocked() -> InputDispatcher.dispatchEventLocked() -> InputDispatcher.prepareDispatchCycleLocked() -> InputDispatcher.enqueueDispatchEntriesLocked() -> InputDispatcher.startDispatchCycleLocked() -> InputPublisher.publishMotionEvent()

@frameworks\native\libs\input\InputTransport.cppstatus_t InputPublisher::publishMotionEvent(        uint32_t seq, int32_t eventId, int32_t deviceId, int32_t source, int32_t displayId,        std::array hmac, int32_t action, int32_t actionButton, int32_t flags,        int32_t edgeFlags, int32_t metaState, int32_t buttonState,        MotionClassification classification, float xScale, float yScale, float xOffset,        float yOffset, float xPrecision, float yPrecision, float xCursorPosition,        float yCursorPosition, nsecs_t downTime, nsecs_t eventTime, uint32_t pointerCount,        const PointerProperties* pointerProperties, const PointerCoords* pointerCoords) {    ...    InputMessage msg;    msg.header.type = InputMessage::Type::MOTION;    msg.body.motion.seq = seq;    msg.body.motion.eventId = eventId;    ...    return mChannel->sendMessage(&msg);}

4.8 WindowManagerService模块4.8.1 ViewRootImpl阶段

InputDispatcher通过InputChannel将事件发送到目标窗口的进程了。那么目标窗口是如何接收传递事件呢?
(1)Activity创建窗口相关阶段介绍
attach阶段:
一个Activity 创建了一个PhoneWindow对象 ,PhoneWindow通过setWindowManager() 创建了WindowManagerImpl 。
即Activity 对应一个PhoneWindow,并得到了一个WindowManager(WindowManagerImpl,Window创建的)。
onCreate阶段:
创建了DecorView ,并将 activity的布局添加到DecorView中 。
onResume阶段:
创建了ViewRootImpl,通过setView()最终由Session进入system_server进程。最终执行addWindow添加窗口到WMS。

(2)ViewRootImpl.setView()

@frameworks\base\core\java\android\view\ViewRootImpl.javapublic void setView(View view, WindowManager.LayoutParams attrs, View panelParentView,            int userId) {        synchronized (this) {            if (mView == null) {                ...                InputChannel inputChannel = null;                if ((mWindowAttributes.inputFeatures                        & WindowManager.LayoutParams.INPUT_FEATURE_NO_INPUT_CHANNEL) == 0) {                    inputChannel = new InputChannel();//创建inputChannel对象                }                try {                    ...                    res = mWindowSession.addToDisplayAsUser(mWindow, mSeq, mWindowAttributes,                            getHostVisibility(), mDisplay.getDisplayId(), userId, mTmpFrame,                            mAttachInfo.mContentInsets, mAttachInfo.mStableInsets,                            mAttachInfo.mDisplayCutout, inputChannel,                            mTempInsets, mTempControls);//通过session跨进程调用WMS的addWindow方法给inputChannel赋值                    setFrame(mTmpFrame);                }                ...                if (inputChannel != null) {                    if (mInputQueueCallback != null) {                        mInputQueue = new InputQueue();                        mInputQueueCallback.onInputQueueCreated(mInputQueue);                    }                    mInputEventReceiver = new WindowInputEventReceiver(inputChannel,                            Looper.myLooper());//创建mInputEventReceiver对象,用于App侧接收Input事件                }                ...            }        }    }

4.8.2 WindowManagerService.addWindow()

(1)openInputChannel():生成一对inputChannel,并返回一个对象给App端。
Session.addToDisplayAsUser() -> WindowManagerService.addWindow() -> EmbeddedWindow.openInputChannel()

@frameworks\base\services\core\java\com\android\server\wm\EmbeddedWindowController.javaInputChannel openInputChannel() {    final String name = getName();    final InputChannel[] inputChannels = InputChannel.openInputChannelPair(name);//InputChannel底层通过一对socket进行通信    mInputChannel = inputChannels[0];    final InputChannel clientChannel = inputChannels[1];    mWmService.mInputManager.registerInputChannel(mInputChannel);//将一个inputChannel对象注册到Input的Native端    ...    return clientChannel;//返回一个inputChannel对象给App端}

(2)openInputChannelPair():创建一对通过socket通信的inputChannel对象。
InputChannel.openInputChannelPair() -> InputChannel.nativeOpenInputChannelPair() -> android_view_InputChannel.android_view_InputChannel_nativeOpenInputChannelPair() -> InputTransport.openInputChannelPair()

@frameworks\native\libs\input\InputTransport.cppstatus_t InputChannel::openInputChannelPair(const std::string& name,        sp& outServerChannel, sp& outClientChannel) {    int sockets[2];    if (socketpair(AF_UNIX, SOCK_SEQPACKET, 0, sockets)) {        status_t result = -errno;        ALOGE("channel '%s' ~ Could not create socket pair.  errno=%d",                name.c_str(), errno);        outServerChannel.clear();        outClientChannel.clear();        return result;    }    int bufferSize = SOCKET_BUFFER_SIZE;    setsockopt(sockets[0], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize));    setsockopt(sockets[0], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize));    setsockopt(sockets[1], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize));    setsockopt(sockets[1], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize));    sp token = new BBinder();    std::string serverChannelName = name + " (server)";    android::base::unique_fd serverFd(sockets[0]);    outServerChannel = InputChannel::create(serverChannelName, std::move(serverFd), token);//server端    std::string clientChannelName = name + " (client)";    android::base::unique_fd clientFd(sockets[1]);    outClientChannel = InputChannel::create(clientChannelName, std::move(clientFd), token);//client端    return OK;}

4.8.3 WindowInputEventReceiver

app进程和system_server进程通过socket通信,底层捕获的事件最终通过inputChannel模块来实现,再由app端的WindowInputEventReceiver去接收,最后把事件分发到目标View上。
(1)WindowInputEventReceiver构造函数
注册一个事件接收器,WindowInputEventReceiver的父类是InputEventReceiver

@frameworks\base\core\jni\android_view_InputEventReceiver.cpppublic InputEventReceiver(InputChannel inputChannel, Looper looper) {    ...    mInputChannel = inputChannel;    mMessageQueue = looper.getQueue();    mReceiverPtr = nativeInit(new WeakReference(this),            inputChannel, mMessageQueue);//初始化操作    mCloseGuard.open("dispose");}// Called from native code.@SuppressWarnings("unused")@UnsupportedAppUsageprivate void dispatchInputEvent(int seq, InputEvent event) {//native层事件回调方法    mSeqMap.put(event.getSequenceNumber(), seq);    onInputEvent(event);//事件分发到各个目标View上}

(2)nativeInit
由上可知,在添加窗口时,WMS会针对于每个窗口设置一对InputChannel对象,分为client端和server端,其中server端在system_server进程,client端在app进程。我们需要去监听client端,以期能够捕获server端的事件消息。

@frameworks\base\core\jni\android_view_InputEventReceiver.cppstatic jlong nativeInit(JNIEnv* env, jclass clazz, jobject receiverWeak,        jobject inputChannelObj, jobject messageQueueObj) {    ...    sp receiver = new NativeInputEventReceiver(env,            receiverWeak, inputChannel, messageQueue);    status_t status = receiver->initialize();//初始化    ...    receiver->incStrong(gInputEventReceiverClassInfo.clazz); // retain a reference for the object    return reinterpret_cast(receiver.get());}status_t NativeInputEventReceiver::initialize() {    setFdEvents(ALOOPER_EVENT_INPUT);    return OK;}void NativeInputEventReceiver::setFdEvents(int events) {    if (mFdEvents != events) {        mFdEvents = events;        int fd = mInputConsumer.getChannel()->getFd();//此fd为WMS创建的InputChannel的client端        if (events) {            mMessageQueue->getLooper()->addFd(fd, 0, events, this, nullptr);//注册监听        } else {            mMessageQueue->getLooper()->removeFd(fd);//移除监听        }    }}

(3)handleEvent
当server端写入事件时,client端的looper就能被唤醒,会调用handleEvent函数(当fd可读时,会调用LooperCallback的handleEvent,而NativeInputEventReceiver继承自LooperCallback,所以这里会调用NativeInputEventReceiver的handleEvent函数,线程和looper的关系此处不展开)

@frameworks\base\core\jni\android_view_InputEventReceiver.cppint NativeInputEventReceiver::handleEvent(int receiveFd, int events, void* data) {    ...    if (events & ALOOPER_EVENT_INPUT) {        JNIEnv* env = AndroidRuntime::getJNIEnv();        status_t status = consumeEvents(env, false /*consumeBatches*/, -1, nullptr);//处理事件        mMessageQueue->raiseAndClearException(env, "handleReceiveCallback");        return status == OK || status == NO_MEMORY ? 1 : 0;    }    ...    return 1;}status_t NativeInputEventReceiver::consumeEvents(JNIEnv* env,        bool consumeBatches, nsecs_t frameTime, bool* outConsumedBatch) {    ...    for (;;) {        ...        if (!skipCallbacks) {            ...            if (inputEventObj) {                env->CallVoidMethod(receiverObj.get(),                        gInputEventReceiverClassInfo.dispatchInputEvent, seq, inputEventObj);//事件消息回调java层                if (env->ExceptionCheck()) {                    ALOGE("Exception dispatching input event.");                    skipCallbacks = true;                }                env->DeleteLocalRef(inputEventObj);            }        }        ...    }}

五、Input设备节点介绍5.1 常见触摸事件类型

事件类型事件名称事件编码事件定义
EV_SYN同步事件0004 or 0005代表一个事件开始(不必要)
EV_SYN同步事件SYN_REPORT代表一个事件结束(必要的)
EV_ABS绝对坐标的事件ABS_MT_SLOT本质代表着不同的手指,他的value代表手指id
EV_ABS绝对坐标的事件ABS_MT_TRACKING_ID类协议特有的,每个slot会和一个ID相对应,一个非负数表示一次接触,ffffffff表示一次接触结束,即手指抬起。无论在接触的类型相对应的slot发生改变,驱动都应该通过改变这个值来使这个slot失效,并且下一次触摸的ID值会是这次的值加1
EV_ABS绝对坐标的事件ABS_MT_POSITION_X相对于屏幕中心的x坐标
EV_ABS绝对坐标的事件ABS_MT_POSITION_Y相对于屏幕中心的y坐标
EV_ABS绝对坐标的事件ABS_MT_TOUCH_MAJOR接触部分的长轴长度,相当于椭圆的长轴
EV_ABS绝对坐标的事件ABS_MT_TOUCH_MINOR接触部分的短轴长度,相当于椭圆的短轴
EV_ABS绝对坐标的事件ABS_MT_PRESSURE代表按下压力,有的设备不一定有
EV_KEY按键事件BTN_TOUCH触碰按键,其值是DOWN或者UP
EV_KEY按键事件BTN_TOOL_FINGER按键的是finger,其值是DOWN或者UP

5.2 getevent

adb shell getevent -lt

5.3 sendevent

模拟按压音量键+

//通过getevent指令,获取音量按键+的事件码bengal:/ # geteventadd device 1: /dev/input/event4  name:     "bengal-scubaidp-snd-card Button Jack"add device 2: /dev/input/event3  name:     "bengal-scubaidp-snd-card Headset Jack"add device 3: /dev/input/event0  name:     "qpnp_pon"add device 4: /dev/input/event1  name:     "gpio-keys"add device 5: /dev/input/event2  name:     "sitronix_ts_i2c"/dev/input/event1: 0001 0073 00000001/dev/input/event1: 0000 0000 00000000/dev/input/event1: 0001 0073 00000000/dev/input/event1: 0000 0000 00000000//通过sendevent模拟音量键+的事件130|bengal:/ # sendevent /dev/input/event1 1 115 1bengal:/ # sendevent /dev/input/event1 0 0 0bengal:/ # sendevent /dev/input/event1 1 115 0bengal:/ # sendevent /dev/input/event1 0 0 0bengal:/ #

ps:getevent获取到的事件码为16进制,sendevent输入的值为10进制,需要注意下!!!

六、参考资料

https://liuwangshu.blog.csdn.net/article/details/84883156
https://liuwangshu.blog.csdn.net/article/details/86771746
https://www.cnblogs.com/brucemengbm/p/7072395.html
事件分发介绍:
https://www.cnblogs.com/fanglongxiang/p/14091511.html
InputChannel介绍:
https://blog.csdn.net/ztisen/article/details/130188132
GetEvent指令介绍:
https://blog.csdn.net/Gary1_Liu/article/details/124675608