机器学习与人工智能:一场革命性的变革

  • 人工智能的概述
  • 什么是机器学习
    • 定义
    • 解释
  • 数据集结构
  • 机器学习应用场景

人工智能的概述

1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,约翰·麦卡锡(John McCarthy)、马文·闵斯基(MarvinMinsky,人工智能与认知学专家)、克劳德·香农(Claude Shannon,信息论的创始人)、艾伦·纽厄尔(AllenNewell,计算机科学家)、赫伯特·西蒙(Herbert Simon,诺贝尔经济学奖得主)等科学家正聚在一起,讨论着一个完全不食人间烟火的主题:用机器来模仿人类学习以及其他方面的智能,会议足足开了两个月的时间,虽然大家没有达成普遍的共识,但是却为会议讨论的内容起了一个名字:人工智能,因此,1956年也就成为了人工智能元年。

达特茅斯会议-人工智能的起点

  • 人工智能、机器学习与深度学习的关系
  • 机器学习是人工智能的一个实现途径
  • 深度学习是机器学习的一个方法发展而来

什么是机器学习

定义

汤姆·米切尔(Tom M.Mitchell,机器学习之父):A computer program is said to learn from experienceE with respect to some class of tasks T and performance measure P if its performance at tasks in T, asmeasured by P, improves with experience E.

假设用性能度量P来评估机器在完成某类任务T的性能,如果该机器利用经验E(即数据D)在任务T中改善了其性能度量P,那么可以说机器对经验E进行了学习,即机器学习
机器学习是从历史数据分析获得算法模型,并利用算法模型对未知数据进行预测.

解释


我们人从大量的日常经验中归纳规律,当面临新的问题的时候,就可以利用以往总结的规律去分析现实状况,采取最佳策略。


从数据(大量的猫和狗的图片)中自动分析获得模型(辨别猫和狗的规律),从而使机器拥有识别猫和狗的能力。


从数据(房屋的各种信息)中自动分析获得模型(判断房屋价格的规律),从而使机器拥有预测房屋价格的能力。

数据集结构

从历史数据中获得规律?那么历史数据是什么样的格式?

  1. 数据集结构:特征值+目标值
  2. 每行数据,称为样本(sample)或实例(instance)
  3. 研究对象的性质,例如面积、位置、楼层、朝向,称为特征(feature)或输入(input)
  4. 特征的具体数值,例如【样本1】对应的80、9、3、0,称为特征值(feature value)
  5. 样本的结果信息,例如【样本1】的房价为80,称为标签(label)或目标(target)或输出(output)
  6. 从数据中学习得到模型的过程称为学习(learn)或训练(train)
  7. 用于训练模型的样本数据集称为训练集(train set)
  8. 用于测试模型的样本数据集称为测试集(test set)

注意:有些数据集可以没有目标值

机器学习应用场景

机器学习的应用场景非常广泛,可以说渗透各行各业,例如医疗航空教育物流电商等领域的各种场景


用在挖掘、预测领域:
应用场景:店铺销量预测、量化投资、广告推荐、企业客户分类等
用在图像领域:
应用场景:街道交通标志检测、人脸识别等

用在自然语言处理领域:
应用场景:文本分类、情感分析、自动聊天、文本检测等