使用python制作常用图表

案例01 制作柱形图展示数据的对比关系——员工销售业绩统计表.xlsx

import xlwings as xwapp = xw.App(visible=True, add_book=False)workbook = app.books.open('员工销售业绩统计表.xlsx') # 打开要制作图表的工作簿for i in workbook.sheets: # 遍历工作簿中的工作表chart = i.charts.add(left=200, top=0, width=355, height=211)# 设置图表的位置和尺寸chart.set_source_data(i['A1'].expand()) # 读取工作表中要制作图表的数据chart.chart_type = 'column_clustered' # 制作柱形图workbook.save('柱形图.xlsx')workbook.close()app.quit()

运行结果打开柱形图.xlsx即可查看

图片[1] - 使用python制作常用图表 - MaxSSL

用特定含义的字符串来指定图表类型,常用图表类型对应的字符串如下:

图表类型字符串图表类型字符串
柱形图‘column_clustered’饼图

‘pie’

条形图‘bar_clustered’圆环图‘doughnut’
折线图‘line’散点图‘xy_scatter’
面积图’area‘雷达图’radar‘

批量制作条形图

import xlwings as xwapp = xw.App(visible = True, add_book = False)workbook = app.books.open('员工销售业绩统计表.xlsx')for i in workbook.sheets:chart = i.charts.add(left = 200, top = 0, width = 355, height = 211)chart.set_source_data(i['A1'].expand('table'))chart.chart_type = 'bar_clustered' # 制作条形图workbook.save('条形图.xlsx')workbook.close()app.quit()

案例02 制作折线图展示数据的变化趋势——月销售表.xlsx

import pandas as pdimport matplotlib.pyplot as pltimport xlwings as xwdf = pd.read_excel('月销售表.xlsx')figure = plt.figure()plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = df['月份']y = df['销售额']plt.plot(x, y, color = 'red', linewidth = '3', linestyle = 'solid')# 制作折线图plt.title(label = '月销售额趋势图', fontdict = {'color' : 'black', 'size' : 30}, loc = 'center') # 添加并设置图表标题for a,b in zip(x,y): # 遍历折线图表标题plt.text(a, b + 0.2, (a, '%.0f' % b), ha = 'center', va ='bottom', fontsize = 10) # 添加并设置数据标签plt.axis('off')# 隐藏坐标轴app = xw.App(visible = False)# 启动Excel程序workbook = app.books.open('月销售表.xlsx')# 打开要插入图表的工作簿worksheet = workbook.sheets['Sheet1'] #选中工作表”Sheet1“worksheet.pictures.add(figure, name = '图片1', update = True, left = 200) # 在工作表中插入制作的折线图workbook.save('折线图.xlsx')workbook.close()app.quit()

运行结果:

图片[2] - 使用python制作常用图表 - MaxSSL

axis()函数的参数值为’off’时表示不显示图表坐标轴,为‘on’时表示显示图表坐标轴

制作折线图并为最高点添加数据标签

import pandas as pdimport matplotlib.pyplot as pltimport xlwings as xwdf = pd.read_excel('月销售表.xlsx')figure = plt.figure()plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = df['月份']y = df['销售额']plt.plot(x, y, color = 'red', linewidth = '3', linestyle = 'solid')# 制作折线图plt.title(label = '月销售额趋势图', fontdict = {'color' : 'black', 'size' : 30}, loc = 'center') # 添加并设置图表标题max1 = df['销售额'].max() # 获取最高销售额df_max = df[df['销售额']== max1]# 选取最高销售额对应的行数据for a,b in zip(df_max['月份'],df_max['销售额']): # 遍历折线图表标题plt.text(a, b + 0.05, (a, '%.0f' % b), ha = 'center', va ='bottom', fontsize = 10) # 添加并设置数据标签plt.axis('off')# 隐藏坐标轴app = xw.App(visible = False)# 启动Excel程序workbook = app.books.open('月销售表.xlsx')# 打开要插入图表的工作簿worksheet = workbook.sheets['Sheet1'] #选中工作表”Sheet1“worksheet.pictures.add(figure, name = '图片1', update = True, left = 200) # 在工作表中插入制作的折线图workbook.save('显示最高点数据标签的折线图.xlsx')workbook.close()app.quit()

运行结果:

图片[3] - 使用python制作常用图表 - MaxSSL

制作平滑折线图

import pandas as pdimport matplotlib.pyplot as pltimport numpy as npfrom scipy import interpolateimport xlwings as xwdf = pd.read_excel('月销售表.xlsx')figure = plt.figure()plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = df['月份']y = df['销售额']xnew = np.arange(1, 12, 0.1)func = interpolate.interp1d(x, y, kind = 'cubic')ynew = func(xnew)plt.plot(xnew, ynew, color = 'red', linewidth = '3', linestyle = 'solid') # 制作平滑折线图plt.title(label = '月销售额趋势图',fontdict = {'color' : 'black', 'size' : 30}, loc = 'center')plt.xlabel('月份', fontdict = {'family' : 'SimSun', 'color' : 'black', 'size' : 20}, labelpad = 20)plt.ylabel('销售额', fontdict = {'family' : 'SimSun', 'color' : 'black', 'size' : 20}, labelpad = 20)plt.xlim(0, 12)# 设置图表x轴的取值范围app = xw.App(visible = False)workbook = app.books.open('月销售表.xlsx')worksheet = workbook.sheets['Sheet1']worksheet.pictures.add(figure, name = '图片1', update = True, left = 200)workbook.save('平滑折线图.xlsx')workbook.close()app.quit()

运行结果:

图片[4] - 使用python制作常用图表 - MaxSSL

arange()是NumPy模块中的函数,用于创建等差数组。

语法格式:

arange(start,stop,step)

参数说明
start起始值。可选参数,默认从0开始
stop结束值。生成的数组不包含结束值
step步长。可选参数,默认步长为1,如果指定了step,还必须给出start

案例03 制作散点图判断两组数据的相关性——汽车速度和刹车距离表.xlsx

import pandas as pdimport matplotlib.pyplot as pltimport xlwings as xwdf = pd.read_excel('汽车速度和刹车距离表.xlsx')figure = plt.figure()plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = df['汽车速度(km/h)']y = df['刹车距离(m)']plt.scatter(x, y, s = 400, color = 'red', marker = 'o', edgecolor = 'black')# 制作散点图plt.xlabel('汽车速度(km/h)', fontdict = {'family' : 'Microsoft YaHei', 'color' : 'black', 'size' : 20}, labelpad = 20) # 添加并设置x轴标题plt.ylabel('刹车距离(m)', fontdict = {'family' : 'Microsoft YaHei', 'color' : 'black', 'size' : 20}, labelpad = 20) # 添加并设置y轴标题plt.title('汽车速度与刹车距离关系图', fontdict = {'family' : 'Microsoft YaHei', 'color' : 'black', 'size' : 30}, loc = 'center') # 添加并设置图表标题app = xw.App(visible = False)# 启动Excel程序workbook = app.books.open('汽车速度和刹车距离表.xlsx')# 打开要插入图表的工作簿worksheet = workbook.sheets[0]# 选中第1个工作表worksheet.pictures.add(figure, name = '图片1', update = True, left = 200)# 在工作表中插入制作的散点图workbook.save('散点图.xlsx')workbook.close()app.quit()

运行结果:

图片[5] - 使用python制作常用图表 - MaxSSL

scatter()是Matplotlib模块中的函数,用于制作散点图。

语法格式:

scatter(x,y,s,color,marker,linewidth,edgecolor)

参数说明
xx坐标的值
yy坐标的值
s每个点的面积。如果该参数只有一个值或者省略该参数,表示所有点的大小都一样;如果该参数有多个值,则表示每个点的大小都不一样,此时散点图就变成了气泡图
color每个点的填充颜色。即可以为所有点填充同一种颜色,也可以为不同的点填充不同的颜色
marker每个点的形状。
linewidth每个点的边框粗细
edgecolor每个点的边框颜色

为散点图添加线性趋势线

import pandas as pdimport matplotlib.pyplot as pltimport xlwings as xwfrom sklearn import linear_modeldf = pd.read_excel('汽车速度和刹车距离表.xlsx')figure = plt.figure()plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = df['汽车速度(km/h)']y = df['刹车距离(m)']plt.scatter(x, y, s = 400, color = 'red', marker = 'o', edgecolor = 'black')plt.xlabel('汽车速度(km/h)', fontdict = {'family' : 'Microsoft YaHei', 'color' : 'black', 'size' : 20}, labelpad = 20)plt.ylabel('刹车距离(m)', fontdict = {'family' : 'Microsoft YaHei', 'color' : 'black', 'size' : 20}, labelpad = 20)plt.title('汽车速度与刹车距离关系图', fontdict = {'family' : 'Microsoft YaHei', 'color' : 'black', 'size' : 30}, loc = 'center')model = linear_model.LinearRegression().fit(x.values.reshape(-1,1), y)pred = model.predict(x.values.reshape(-1,1))plt.plot(x, pred,color = 'black', linewidth = '3', linestyle = 'solid', label = '线性趋势线') # 绘制线性趋势线plt.legend(loc = 'upper left')app = xw.App(visible = False)workbook = app.books.open('汽车速度和刹车距离表.xlsx')worksheet = workbook.sheets[0]worksheet.pictures.add(figure, name = '图片1', update = True, left = 200)workbook.save('为散点图添加线性趋势线.xlsx')workbook.close()app.quit()

运行结果:

图片[6] - 使用python制作常用图表 - MaxSSL

制作气泡图——气泡图.xlsx

import pandas as pdimport matplotlib.pyplot as pltimport xlwings as xwdf = pd.read_excel('气泡图.xlsx')figure = plt.figure()plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = df['销售量']y = df['利润(万)']z = df['产品名称']plt.scatter(x, y, s = y * 100, color = 'red', marker = 'o')plt.xlabel('销售量', fontdict = {'family' : 'Microsoft YaHei', 'color' : 'black', 'size' : 20}, labelpad = 20)plt.ylabel('利润(万)', fontdict = {'family' : 'Microsoft YaHei', 'color' : 'black', 'size' : 20}, labelpad = 20)plt.title('销售量与利润关系图', fontdict = {'family' : 'Microsoft YaHei', 'color' : 'black', 'size' : 30}, loc = 'center')for a, b, c in zip(x, y, z):plt.text(a, b, c, ha = 'center', va = 'center', fontsize = 30, color = 'white')plt.xlim(0, 800)plt.ylim(0, 120)app = xw.App(visible = False)workbook = app.books.open('气泡图.xlsx')worksheet = workbook.sheets[0]worksheet.pictures.add(figure, name = '图片1', update = True, left = 200)workbook.save('气泡图1.xlsx')workbook.close()app.quit()

运行结果:

图片[7] - 使用python制作常用图表 - MaxSSL

案例04 制作饼图展示部分和总体的比例关系——饼图.xlsx

import pandas as pdimport matplotlib.pyplot as pltimport xlwings as xwdf = pd.read_excel('饼图.xlsx')figure = plt.figure()plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = df['产品名称']y = df['销售额']plt.pie(y, labels = x, labeldistance = 1.1, autopct = '%.2f%%', pctdistance = 0.8, startangle = 90, radius = 1.0, explode = [0, 0, 0, 0, 0, 0.3, 0]) # 制作饼图并分离饼图块plt.title(label = '产品销售额占比图', fontdict = {'color' : 'black', 'size' : 30}, loc = 'center')# 添加并设置图表标题app = xw.App(visible = False)workbook = app.books.open('饼图.xlsx')worksheet = workbook.sheets[0]worksheet.pictures.add(figure, name = '图片1', update = True, left = 200) # 在工作表中插入制作的饼图workbook.save()workbook.close()app.quit()

运行结果:

图片[8] - 使用python制作常用图表 - MaxSSL

pie()是Matplotlib模块中的函数,用于制作饼图。

语法格式:

pie(x,explode,labels,colors,autopct,pctdistance,shadow,labeldistance,startangle,radius,counterclock,center,frame)

参数说明
x饼图块的数据系列值
explode一个列表,指定每一个饼图块与圆心的距离
labels每一个饼图块的数据标签内容
colors每一个饼图块的填充颜色
autopct每一个饼图块的百分比数值的格式
pctdistance百分比数值与饼图块中心的距离

shadow

是否为饼图绘制阴影
labeldistance数据标签与饼图块中心的距离
startangle数据的第一个值对应的饼图块在饼图中的初始角度
radius饼图的半径
counterclock是否让饼图逆时针显示
center饼图的中心位置
frame是否显示饼图背后的图框

制作圆环图——饼图.xlsx

为pie()函数适当设置参数wedgeprops的值,就能制作出圆环图。

import pandas as pdimport matplotlib.pyplot as pltimport xlwings as xwdf = pd.read_excel('饼图.xlsx')figure = plt.figure()plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = df['产品名称']y = df['销售额']plt.pie(y, labels = x, autopct = '%.2f%%', pctdistance = 0.85, radius = 1.0, labeldistance = 1.1, wedgeprops = {'width' : 0.3, 'linewidth' : 2, 'edgecolor' : 'white'}) # 用读取的数据制作圆环图plt.title(label = '产品销售额占比图', fontdict = {'color' : 'black', 'size' : 30}, loc = 'center')app = xw.App(visible = False)workbook = app.books.open('饼图.xlsx')worksheet = workbook.sheets[0]worksheet.pictures.add(figure, name = '图片1', update = True, left = 200)workbook.save()workbook.close()app.quit()

运行结果:

图片[9] - 使用python制作常用图表 - MaxSSL

案例05 制作雷达图对比多项指标——雷达图.xlsx

import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdf = pd.read_excel('雷达图.xlsx')df = df.set_index('性能评价指标')# 将数据中的'性能评价指标'列设置为行索引df = df.T # 转置数据表格df.index.name = '品牌'# 将转置后数据中行索引那一列的名称修改为“品牌”def plot_radar(data, feature):# 自定义一个函数用于制作雷达图plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = False cols = ['动力性', '燃油经济性', '制动性', '操控稳定性', '行驶平顺性', '通过性', '安全性', '环保性']# 指定各个品牌要显示的性能评价指标的名称colors = ['green', 'blue', 'red', 'yellow']# 为每个品牌设置图表中的颜色angles = np.linspace(0.1 * np.pi, 2.1 * np.pi, len(cols), endpoint = False)# 根据要显示的指标个数对圆进行等分angles = np.concatenate((angles, [angles[0]]))# 连接刻度线数据cols = np.concatenate((cols, [cols[0]]))fig = plt.figure(figsize = (8, 8))# 设置显示图表的窗口大小ax = fig.add_subplot(111, polar = True)# 设置图表在窗口中的显示位置,并设置坐标轴为极坐标体系for i, c in enumerate(feature):stats = data.loc[c] # 获取品牌对应的指标数据stats = np.concatenate((stats, [stats[0]]))# 连接品牌的指标数据ax.plot(angles, stats, '-', linewidth = 6, c = colors[i], label = '%s'%(c)) # 制作雷达图ax.fill(angles, stats, color = colors[i], alpha = 0.25) # 为雷达图填充颜色ax.legend() # 为雷达图添加图例ax.set_yticklabels([])# 隐藏坐标轴数据ax.set_thetagrids(angles * 180 / np.pi, cols, fontsize = 16)# 添加并设置数据标签plt.show()return figfig = plot_radar(df, ['A品牌', 'B品牌', 'C品牌', 'D品牌'])# 调用自定义函数制作雷达图

运行结果:

图片[10] - 使用python制作常用图表 - MaxSSL

知识延伸

1、linspace()是Numpy模块中 的函数,用于在指定的区间内返回均价间隔的数字。

语法格式:

linspace(start,stop,num=50,endpoint=True,retstep=False,dtype=None)

参数说明
start区间的起始值
stop区间的终止值
num可选参数,指定生成的样本数。取值必须是非负数,默认值为50
endpoint可选参数,指定终止值stop是否被包含在结果数组中。如果为True,则结果中一定会有终止值stop;如果为False,则结果中一定没有终止值stop
retstep、dtype可选参数,一般不使用

2、concatenate()函数用于一次完成多个数组的拼接。

语法格式:

concatenate((a1,a2,……),axis=0)

参数:

(a1,a1,……):要拼接的数组

axis=0:拼接的轴向,通常可以省略

3、add_subplot()函数用于在一张画布上划分区域,以绘制多张子图。

4、fill()函数用于为由一组坐标值定义的多边形区域填充颜色。

语法格式:

fill(x,y,color,alpha)

参数:

x,y:多边形各顶点的x坐标值和y坐标值列表

color:填充颜色

alpha:填充颜色的透明度

制作某一品牌性能评价指标雷达图——雷达图.xlsx

import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdf = pd.read_excel('雷达图.xlsx')df = df.set_index('性能评价指标') df = df.T df.index.name = '品牌'def plot_radar(data, feature): plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falsecols = ['动力性', '燃油经济性', '制动性', '操控稳定性', '行驶平顺性', '通过性', '安全性', '环保性']colors = ['green', 'blue', 'red', 'yellow']angles = np.linspace(0.1 * np.pi, 2.1 * np.pi, len(cols), endpoint = False)angles = np.concatenate((angles, [angles[0]]))cols = np.concatenate((cols, [cols[0]]))fig = plt.figure(figsize = (8, 8)) ax = fig.add_subplot(111, polar = True)for i, c in enumerate(feature):stats = data.loc[c]stats = np.concatenate((stats, [stats[0]]))ax.plot(angles, stats, '-', linewidth = 6, c = colors[i], label = '%s'%(c)) ax.fill(angles, stats, color = colors[i], alpha = 0.25)ax.legend() ax.set_yticklabels([])ax.set_thetagrids(angles * 180 / np.pi, cols, fontsize = 16)plt.show()return figfig = plot_radar(df, ['A品牌']) # 查看A品牌的性能评价指标情况

运行结果:

图片[11] - 使用python制作常用图表 - MaxSSL

案例06 制作温度计图展示工作进度——温度计图.xlsx

import pandas as pdimport matplotlib.pyplot as pltdf = pd.read_excel('温度计图.xlsx')sum = 0# 定义变量sum,用于存储全年的实际销售业绩for i in range(12):sum = df['销售业绩(万元)'][i] + sum# 累加12个月的实际销售业绩,得到全年的实际销售业绩goal = df['销售业绩(万元)'][13]# 获取全年的目标销售业绩percentage = sum / goal # 计算全年的实际销售业绩占目标销售业绩的百分比plt.bar(1, 1, color = 'yellow')# 制作柱形图展示全年的目标销售业绩plt.bar(1, percentage, color = 'cyan') # 制作柱形图展示全年的实际销售业绩,设置填充颜色为青色plt.xlim(0, 2)# 设置图表x轴的取值范围plt.ylim(0, 1.2) # 设置图表y轴的取值范围plt.text(1, percentage - 0.01, percentage, ha = 'center', va = 'top', fontdict = {'color' : 'black', 'size' : 20}) # 添加并设置数据标签plt.show()# 显示制作的温度计图

运行结果:

图片[12] - 使用python制作常用图表 - MaxSSL

制作上半年销售业绩的温度计图

import pandas as pdimport matplotlib.pyplot as pltdf = pd.read_excel('温度计图.xlsx')sum = 0for i in range(6):sum = df['销售业绩(万元)'][i] + sumgoal = df['销售业绩(万元)'][13]percentage = sum / goalplt.bar(1, 1, color = 'yellow')plt.bar(1, percentage, color = 'cyan')plt.xlim(0, 2)plt.ylim(0, 1.2)plt.text(1, percentage - 0.01, percentage, ha = 'center', va = 'top', fontdict = {'color' : 'black', 'size' : 20})plt.show()

运行结果:

图片[13] - 使用python制作常用图表 - MaxSSL

使用python制作常用图表,这些案例中使用到的数据文件请点击这里【免费】使用python制作常用图表所要使用的数据.zip资源-CSDN文库

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享