- 个人主页:北·海
- CSDN新晋作者
- 欢迎 点赞✍评论⭐收藏
- ✨收录专栏:C/C++
- 希望作者的文章能对你有所帮助,有不足的地方请在评论区留言指正,大家一起学习交流!
天天酷跑,一款童年游戏,主要是进行跳跃操作,和躲避障碍物,中篇主要实现人物的下蹲,随机障碍物的生成以及优化main函数里面的sleep(30)
一. 游戏的展示效果
二.本节开发日志
上篇已更新 :天天酷跑上篇
优化main函数里面的sleep(30);
1.利用接口getDelay()函数
2.更新窗口标志update;
3.优化来自用户点击时候的消息
实现玩家的下蹲
1利用计数器
随机障碍物的实现
1.障碍物池子
2.随机数取类型
三.优化上篇中main函数里的sleep(30)
首先为什么要优化这个呢” />
要解决的问题: 在按跳跃键的时候不受sleep的影响
解决方法 : 利用时间戳,定义一个计时器,当达到该计时器的设定的时间就可以打开刷新窗口的按钮,或者当跳跃时候打开该按钮,代码如下:
int main() {init();while (1) {keyEvent();timer += getDelay();if (timer >= 30) {timer = 0;update = true;}if (update) {update = false;BeginBatchDraw();//渲染背景updataBg();//实现人物的奔跑putimagePNG2(heroX, heroY, &imgHero[heroIndex]);//渲染障碍物updateEnemy();EndBatchDraw();fly();}}system("pause");return 0;}
代码解释 : timer是一个全局变量,用于累加两次函数执行的时间,当达到30ms就会将update标志设置为true进行刷新界面
时间戳 : 一个用于表示特定时刻的数值,通常是一个整数或浮点数。在上述代码中,时间戳用于记录函数调用的时间点
这样优化的话,感觉和sleep(30)的效果一样,此时还需要在跳跃的时候将其update设为true,在以后只要接受玩家键盘消息的时候都要加上
void jump() {//跳跃只需要改变y值即可,在底层数据管理函数实现,此时只需要给出可以改数据的信号即可heroJump = true;update = true;}
这样的话就解决了玩家按跳跃键程序休眠的问题,此时提高了游戏的体验性
开发之前,先回顾一下上篇中的开发流程,将开发分为两层,一个是渲染层(update)一个是数据层(fly),渲染层是将游戏的图片呈现出来,数据层是控制渲染层的,实现游戏的控制,其他的功能根据可封装为函数围绕这两层进行展开,将游戏的资源加载放在初始化函数(init)
四.实现玩家的下蹲功能
天天酷跑主要就是跳跃和下蹲,下蹲可躲避障碍物柱子,给障碍物的创建先奠定基础,实现下蹲和实现跳跃的流程大致相似,分析可知,下蹲时玩家发出的信号,那么我们就可用从用户点击函数开始开发,当玩家按下a的时候执行下蹲操作
资源必须先加载进来,因为下蹲有两张图片,所以在全局定义一个存放该图片的数组,然后再初始化中进行加载
//下蹲IMAGE imgDown[2];bool heroDown;//下蹲标志void init(){...//人物的下蹲loadimage(&imgDown[0], "res/d1.png");loadimage(&imgDown[1], "res/d2.png");heroIndex = 0;heroDown = false;}
由于下蹲是个动态的,所以要用到帧序列,也要将其初始化为0
用户点击
void keyEvent() {//获取玩家键盘事件char ch = 0;if (_kbhit()) {ch = _getch();if (ch == ' ') {//空格为跳跃jump();}else if (ch == 'a') {//a为下蹲down();}}}
当程序收到下蹲的消息时,就会执行该下蹲操作,将下蹲功能封装为一个函数
实现下蹲
void down() {//下蹲只需要改变y值即可, 在底层数据更新函数实现, 此时只需要给出可以改数据的信号即可heroDown = true;update = true;heroIndex = 0 ;}
此时定义一个下蹲的标志,如果时true的话,就可以在数据层进行修改数据,然后打开更新界面的按钮
现在就可以在数据层实现数据的更新了
数据更新
//实现跳跃if (heroJump) {//跳跃状态if (heroY 345 - imgHero[0].getheight()) {//达到地面heroJump = false;heroJumpOff = -4;}}else {//改变人物帧序列heroIndex = (heroIndex + 1) % 12;}
这里是上篇中的人物跳跃和人物跑步,此时只需给该状态添加一个下蹲的状态即可
else if (heroDown) {//下蹲状态heroIndex++;if (heroIndex >= 2) {heroDown = false;heroIndex = 0;}}
我只贴出了下蹲部分的代码,当heroDown为true说明执行下蹲,就改图片帧,当帧数大于等于2的时候,说明一次下蹲操作结束了,此时就可以将下蹲标志设置为false,将图片帧也得归零
这个下蹲的速度非常快,不到1s就结束了,所以没有截图到,除了速度块基本上这个下蹲操作就已经实现了,现在来优化一下这个下蹲的速度
下蹲速度优化
为什么速度会这么快呢” />else if(heroDown){static int count = 0;int dalays[2] = { 4,10 };count++;if (count >= dalays[heroIndex]) {count = 0;heroIndex++;if (heroIndex >= 2) {heroIndex = 0;heroDown = false;}}}
利用static记录循环执行的次数,dalays保存两张图片的计数,heroIndex序列帧循环两个图片,如果满足的话,就将count设为0,执行下蹲操作
渲染下蹲操作
人物跳跃的渲染在main函数里面通过一行代码实现了,但是现在人物的状态有两种,跳跃与下蹲,此时就需要封装为函数了,创建updateHero函数
在main函数里用updateHero函数代替人物奔跑的代码
void updateHero() {//实现人物的奔跑if (!heroDown) {putimagePNG2(heroX, heroY, &imgHero[heroIndex]);}else {int y = 345 - imgDown[heroIndex].getheight();putimagePNG2(heroX, y, &imgDown[heroIndex]);}}
如果处于非下蹲操作,由于人物都是一个高度,当处于下蹲时候,两张图片的高度不一样,所以需要利用图片序列帧计算y的坐标
此时的下蹲代码算是写完了,下面时运行结果此时就很容易的截图到该英雄的下蹲操作了,接下来实现随机障碍物
看看上面几个小标题就是开发这个模块的流程
五.随机障碍物的实现
如何实现随机障碍物呢” />typedef enum {TORTOISE,//乌龟0LION,//狮子1HOOK1,//柱子 2HOO2,HOO3,HOOK4,OBSTACLE_TYPE_COUNT // 总数 }obstacle_type;
在这里用到的OBSTACLE_TYPE_COUNT 很是巧妙,枚举里的值从0开始,到了OBSTACLE_TYPE_COUNT 刚好时前面障碍物的总数,此时就将枚举定义好了,然后就可以封装结构体了
首先应该知道封装的属性都有什么,一个障碍物,他得有类型,坐标,速度,伤害,使用状态,此时我们可用再添加一个图片的帧序列,因为每个障碍物有的是动态的,都有序列,此时就可以将初始化加载图片进行优化,要用到一个大小可变的容器vector来存储,声明为二维的,每一维存储该组图片
vector的使用需要导入头文件vector #include
代码中obstacleImgs为定义在全局的二维数组,在初始化时候,创建个一维数组,最后再将其一维数组添加到该二维数组里
vector<vector>obstacleImgs;//存放所有障碍物的各个图片
此时所有障碍物的图片存在于二维数组obstacleImgs中了
封装结构体
typedef struct obstacle {int type;//类型,由于类型定义在枚举种,枚举里的变量就相当于整数类型,所以可用int代替int x, y;//坐标int imgIndex;//帧序列int speed;//速度int power;//伤害bool exist;//是否可用}obstacle_t;
创建障碍物池子
也就是定义一个结构体数组,OBSTACLE_COUNT是定义的宏,池子的大小
obstacle_t obstacles[OBSTACLE_COUNT];//障碍物池子
在封装了障碍物之后,那么之前小乌龟所定义的地方都需要优化了
小乌龟的定义
创建小乌龟
fly函数中小乌龟的运动
障碍物的渲染层
此时可用依据上面删除的部分进行开发,定义我们已经做了但是应该将池子里的exist属性进行初始化,以保证能够正确的知道哪个障碍物可用
void init(){...//初始化障碍物池子for (int i = 0; i < OBSTACLE_COUNT; i++) {obstacles[i].exist = false;}}
接下来需要创建小乌龟,此时应该重写creatObstacle函数,
开发思路 : 先用for循环在池子里面找到一个可用使用的障碍物,也就是exist为false的,然后再设定他的各属性
void creatObstacle() {int i = 0;//找到一个可以用的障碍物for (i = 0; i = HOOK1 && obstacles[i].type<= HOOK4) {//四个柱子obstacles[i].power = 20;obstacles[i].speed = 0;//静态的obstacles[i].y = 0;//由于柱子是在填上挂着,所以将其y设置为0}}
这个初始化看着比较多,但是难度不大,就找到一个可以用的障碍物,然后将其封装的属性进行初始化,实现随机就是再枚举里面取随机数,只有狮子是跑过来的,所以要和第三层草坪背景图的速度不能保持一致,其他障碍物的速度设置为0即可实现初始化
fly中更新障碍物的数据
更新x坐标使其运动,更新图片帧序列使其处于动态
void init(){...//更新各障碍物的状态for (int i = 0; i < OBSTACLE_COUNT; i++) {if (obstacles[i].exist) {obstacles[i].x -= (obstacles[i].speed + bgSpeed[2]);if (obstacles[i].x < -obstacleImgs[obstacles[i].type][0].getwidth() * 2) {//已经从左边跑出了屏幕obstacles[i].exist = false;}//更新该障碍物的帧序列int len = obstacleImgs[obstacles[i].type].size();obstacles[i].imgIndex = (obstacles[i].imgIndex + 1) % len;}}}
代码解释 : 从障碍物池子里面找正字使用的障碍物,找到之后,再改变他的x坐标,bgSpeed[2]为草坪的速度,当减去他的时候,和草坪是相对速度为0,再减去该障碍物的速度,就是和草坪的相对速度,若不为0,此时就能显示出运动的状态,若为0,就和草坪相对静止
渲染障碍物
void updateEnemy() {for (int i = 0; i < OBSTACLE_COUNT; i++) {if (obstacles[i].exist) {putimagePNG2(obstacles[i].x, obstacles[i].y, WIN_WIDTH,&obstacleImgs[obstacles[i].type][obstacles[i].imgIndex]);}}}
渲染的图片的第一维是该图片的类型,第二维是该图片的帧数,很巧妙
这样就设计完了,看看成果
我跑了半分钟,感觉这个柱子出现的频率还是太大了,因为当初随机数是对6取余的,二柱子就占了四个,所以这里可用优化
此时类型的这里就化解了,取两次随机数,让其柱子出现的几率降低
此时就能看到这几个障碍物同框了,但是碰撞这里还没有做,现在随机障碍物也实现了
六.实现英雄与障碍物的碰撞检测
从图可以看出,障碍物的碰撞检测就是在检测两个矩形是否相交,这种判断矩形相交的代码在网上开源的有很多
如果以白边的坐标来检测的话,可能会有误差,则加上偏移量,使判断更加准确,
分析 : 碰撞检测实在数据层进行的,但是这个功能可封装为函数,所以在fly函数里面定义一个checkHit函数用于检测碰撞
一下是判断是否碰撞的代码,主要是找到这四个点的坐标,加上偏移量即可
开源代码,判断矩形是否相交
//设A[x01,y01,x02,y02]B[x11,y11,x12,y12].bool rectIntersect(int x01, int y01, int x02, int y02,int x11, int y11, int x12, int y12){int zx = abs(x01 + x02 - x11 - x12);int x = abs(x01 - x02) + abs(x11 - x12);int zy = abs(y01 + y02 - y11 - y12);int y = abs(y01 - y02) + abs(y11 - y12);return(zx <= x && zy <= y);}
找四个点的坐标,调用rectIntersect函数进行判断是否相交
void checkHit() {//实现碰撞检测for (int i = 0; i type][obstacles->imgIndex];int b1x = obstacles[i].x + off;int b1y = obstacles[i].y + off;int b2x = obstacles[i].x + img.getwidth() - off;int b2y = obstacles[i].y + img.getheight() - 10;if (rectIntersect(a1x, a1y, a2x, a2y, b1x, b1y, b2x, b2y)) {//相交heroBlood -= obstacles[i].power;printf("剩余血量 : %d\n", heroBlood);playSound("res/hit.mp3");}}}}
此时有个bug,碰撞一次,连续掉血多次
bug原因 : 一帧一帧的检测
解决方法 : 结构体中添加属性,是否碰撞,在进行对其初始化,最后在碰撞检测函数里面优化
1.添加了判断条件
2.当判断碰撞后,将其hited设置为true
效果图:
以上就是英雄与障碍物的碰撞检测模块了
七.总结
主要学习开发思想,一些开发技巧,将语法用到实战,了解计时器,计数器,枚举,结构体在开发中的应用,灵活运用函数封装提高程序的可读性,如何改善了用户点击休眠时的问题