大家好,我是csdn的博主:lqj_本人

这是我的个人博客主页:lqj_本人的博客_CSDN博客-微信小程序,前端,vue领域博主lqj_本人擅长微信小程序,前端,vue,等方面的知识https://blog.csdn.net/lbcyllqj” />小淼前端的个人空间_哔哩哔哩_bilibili

本篇文章主要讲述python的人工智能目标跟踪,本篇文章已经成功收录到我们python专栏中:https://blog.csdn.net/lbcyllqj/category_12089557.htmlhttps://blog.csdn.net/lbcyllqj/category_12089557.html

目录

前言

项目介绍

区域性锁定目标实时动态跟踪(适用 警方追捕,无人机锁定拍摄等)

首先先介绍几种AI视觉算法

详细代码讲解

完整代码及注释:

结果演示

区域性全部实时动态目标跟踪(适用夜视跟踪,范围性观察等)

思路构建

详细代码讲解

完整代码及注释:

结果显示


前言

本程序主要实现了python的opencv人工智能视觉模块的目标跟踪功能。

若不知道怎么安装opencv或者使用的请看我的这篇文章(曾上过csdn综合热榜的top1):

python进阶——人工智能视觉识别_lqj_本人的博客-CSDN博客

项目介绍

区域性锁定目标实时动态跟踪(适用 警方追捕,无人机锁定拍摄等)

首先先介绍几种AI视觉算法

特性:

1.BOOSTING:算法原理类似于Harr cascdes(AdaBoost),是一种很老的算法。这个算法速度慢并且不准。

2.MIL:比BOOSTING准一点

3.KCF:速度比BOOSTING和MIL更快,与BOOSTING和MIL一样不能很好的处理遮挡问题。

4.CSRT:比KCF更准一些,但是速度比KCF慢

5.MedianFlow:对于快速移动的目标和外形比那花迅速的目标效果不好

6.TLD:会产生朵的false-posittives

7.MOSSE:算法速度非常快,但是准确率比不上KCF和CSRT,在一些追求算法的速度场合很适用

8.GOTURN:OpenCV中自带的唯一一个基于深度学习的算法,运行短发需要提前下载好模型文件

分别对应的伴生的函数:

kcf:cv2.legacy.TrackerKCF_createcsrt:cv2.legacy.TrackerCSRT_createboosting:cv2.legacy.TrackerBoosting_createmil:cv2.legacy.TrackerMIL_createtld:cv2.legacy.TrackerTLD_createmedianflow:cv2.legacy.TrackerMedianFlow_createmosse:cv2.legacy.TrackerMOSSE_create

详细代码讲解

导入cv模块

import cv2

使用csrt算法,引用伴生函数,并赋值给tracker

tracker = cv2.legacy.TrackerCSRT_create()

读取视频流

cap = cv2.VideoCapture('11.mp4')

先读取到第一帧

ret,frame = cap.read()

使用selectROI(前景),画框将目标框起,并赋值给bbox

bbox = cv2.selectROI('A',frame,fromCenter=False,showCrosshair=True)

初始化tracker,将上面的两个值传入

tracker.init(frame,bbox)

读取每一帧

ret,frame = cap.read()

根据每一帧来更新tracker

ok,box = tracker.update(frame)

若读取成功,就定位画框,并跟随

if ok :(x,y,w,h) = [int(v) for v in box]cv2.rectangle(frame,pt1=(int(x),int(y)),pt2=(int(x)+int(w),int(y)+int(h)),color=(0,255,0),thickness=2)

显示视频流

cv2.imshow('A', frame)

等待50毫秒或按空格键退出

if cv2.waitKey(50) == ord(' '):break

释放视频流和释放窗口

cap.release()cv2.destroyAllWindows()

完整代码及注释:

import cv2tracker = cv2.legacy.TrackerCSRT_create()#使用csrt算法,引用伴生函数,并赋值给trackercap = cv2.VideoCapture('11.mp4')#读取视频流ret,frame = cap.read()#先读取第一帧bbox = cv2.selectROI('A',frame,fromCenter=False,showCrosshair=True)#使用selectROI(前景),画框将目标框起,并赋值给bboxtracker.init(frame,bbox)#初始化tracker,将上面的两个值传入while True:ret,frame = cap.read()#读取每一帧ok,box = tracker.update(frame)#根据每一帧来跟新tracker# 若读取成功,我们就定位画框,并跟随if ok :(x,y,w,h) = [int(v) for v in box]cv2.rectangle(frame,pt1=(int(x),int(y)),pt2=(int(x)+int(w),int(y)+int(h)),color=(0,255,0),thickness=2)cv2.imshow('A', frame)#显示视频流if cv2.waitKey(50) == ord(' '):#等待50毫秒或键盘按空格键退出break# 释放视频流,释放窗口cap.release()cv2.destroyAllWindows()

结果演示

区域性全部实时动态目标跟踪(适用夜视跟踪,范围性观察等)

思路构建

1.先将实时摄像流或录制视频流,灰度转化并高斯模糊

2.用二值化算法将流中的物体轮廓扩充

3.分别先读到第一帧和第二帧,让其对比

4.寻找对比后,流的轮廓位置,并开启简易模式

5.过滤物体的矩阵轮廓将其定位绘出

详细代码讲解

导入cv模块

import cv2

将视频流转换并让其高斯模糊

gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)blur = cv2.GaussianBlur(gray,(5,5),0)

二值化扩充

_,thresh = cv2.threshold(blur,20,255,cv2.THRESH_BINARY)dilated = cv2.dilate(thresh,None,iterations=3)return dilated

读取视频流或实时摄像流

cap = cv2.VideoCapture('11.mp4')

读取第一帧

ret,frame1 = cap.read()

读取第二帧

ret,frame2 = cap.read()

判断cap是否为打开状态

while cap.isOpened():

若为打开,则第一帧与第二帧比较

diff = cv2.absdiff(frame1,frame2)mask = filter_img(diff)

寻找比较后的物体轮廓,并开启简易模式

contours,_ = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

使用方框将视频流中的物体框出,得到矩阵的宽高

(x,y,w,h) = cv2.boundingRect(contour)

若矩阵的面积小于10(根据视频流中物体的大小来定义),直接无视

if cv2.contourArea(contour) < 10:

将过滤的物体的矩阵轮廓绘出(一定要用int整形)

cv2.rectangle(frame1,pt1=(int(x),int(y)),pt2=(int(x)+int(w),int(y)+int(h)),color=(0,255,0),thickness=1)

将第一帧显示

cv2.imshow('A',frame1)

将上面赋值的mask显示

cv2.imshow('B',mask)

实现前后帧对比,并定位物体运动轨迹

1.将第二帧赋值给第一帧

frame1 = frame2

2.再将cap读到的赋值给第二帧()

ret,frame2 = cap.read()

等待50毫秒或者按空格结束

if cv2.waitKey(50) == ord(' '):break

释放视频流及释放窗口

cap.release()cv2.destroyAllWindows()

完整代码及注释:

import cv2def filter_img(frame):#将视频流转换灰度并让其高斯模糊gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)blur = cv2.GaussianBlur(gray,(5,5),0)#二值化将其扩充_,thresh = cv2.threshold(blur,20,255,cv2.THRESH_BINARY)dilated = cv2.dilate(thresh,None,iterations=3)return dilated# 读取视频流cap = cv2.VideoCapture('11.mp4')ret,frame1 = cap.read()#读到第一帧ret,frame2 = cap.read()#读到第二帧while cap.isOpened():#判断cap是否打开diff = cv2.absdiff(frame1,frame2)#若打开,则第一帧和第二帧作比较mask = filter_img(diff)contours,_ = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)#寻找视频流的轮廓,简单模式#用方框将视频流中的物体用矩形框出for contour in contours:(x,y,w,h) = cv2.boundingRect(contour)#得到矩阵的宽高if cv2.contourArea(contour) < 10:#若矩阵的面积小于200,就无视(太小了)continuecv2.rectangle(frame1,pt1=(int(x),int(y)),pt2=(int(x)+int(w),int(y)+int(h)),color=(0,255,0),thickness=1)#将过滤的物体的矩阵轮廓绘出# cv2.drawContours(frame1,contours,-1,(0,255,0),2)#将视频流中的物体轮廓画出cv2.imshow('A',frame1)#将第一帧显示cv2.imshow('B',mask)#将mask也显示frame1 = frame2#将第二帧赋值给第一帧ret,frame2 = cap.read()#再将cap读到的赋值给第二帧if cv2.waitKey(50) == ord(' '):#等待五十毫秒或者按空格结束break#销毁cap流cap.release()#释放窗口cv2.destroyAllWindows()

结果显示